Chinese Journal of Ship Research, Volume. 17, Issue 5, 134(2022)
Research status and control technology of autonomous underwater vehicle variable buoyancy system
[1] [1] OKAMOTO A, TAMURA K, SASANO M, et al. Development of hoveringtype AUV “HOBALIN” f expling seaflo hydrothermal deposits[C]OCEANS 2016 MTSIEEE Monterey. Monterey: IEEE, 2016: 1–4.
[9] [9] FURLONG M E, PAXTON D, STEVENSON P, et al. Autosub long range: a long range deep diving AUV f ocean moniting[C]2012 IEEEOES Autonomous Underwater Vehicles (AUV). Southampton: IEEE, 2012: 1–7.
[14] [14] MEDVEDEV A V, KOSTENKO V V, TOLSTONOGOV A Y. Depth control methods of variable buoyancy AUV[C]2017 IEEE Underwater Technology (UT). Busan: IEEE, 2017: 1–5.
[18] [18] MASH J, DAMUS R, DESSET S, et al. Adapting a surveyclass AUV f high resolution seaflo imaging[C]14th International Symposium on Unmanned Untethered Submersible Technology (UUST). Durham, Nth Carolina, US, 2005.
[23] CHEN Y, WANG G X, XU G H et al. Hovering control of submarine based on L1 adaptive theory via ballast tanks[J]. International Journal of Advanced Robotic Systems, 14, 1-10(2017).
[27] [27] MASMITJ I, GONZLEZ J, GOMRIZ S. Buoyancymodel f Guanay II AUV[C]OCEANS 2014TAIPEI. Taipei, China: IEEE, 2014: 1–7.
[30] [30] KEOW A, ZUO W Y, GHBEL F, et al. Underwater buoyancy depth control using reversible PEM fuel cells[C]2020 IEEEASME International Conference on Advanced Intelligent Mechatronics (AIM). Boston: IEEE, 2020: 54–59.
[31] [31] LILLEMOEN N F. Development of software tool f identification of ballast errs in autonomous underwater vehicles[D]. Trondheim: Nwegian University of Science Technology, 2014: 168.
[32] [32] FERGUSON J S. The Theseus autonomous underwater vehicle. Two successful missions[C]Proceedings of 1998 International Symposium on Underwater Technology. Tokyo: IEEE, 1998: 109–114.
[39] [39] ASAKAWA K, NAKAMURA M, MAEDA Y, et al. Lingsleep driftingsleep experiments of the underwater glider f longterm observation[C]2016 IEEEOES Autonomous Underwater Vehicles (AUV). Tokyo: IEEE, 2016: 246–250.
[41] [41] LIU T J, JIANG Z B, LI S, et al. Expler 1000: a long endurance AUV with variable ballast systems[C]2018 OCEANSMTSIEEE Kobe TechnoOceans (OTO). Kobe: IEEE, 2018: 1–6.
[42] [42] JIANG Z B, LI S, LIU T J. Active disturbance rejection control f diving motion of autonomous underwater vehicles[C]2016 IEEE International Conference on Robotics Biomimetics (ROBIO). Qingdao: IEEE, 2016: 14181423.
[48] [48] RIEDEL J S, HEALEY A J, MARCO D B, et al. Design development of low cost variable buoyancy system f the soft grounding of autonomous underwater vehicles[R]. Montreal: Naval Postgradute School Monterey Ca Center f Autonomous Underwater Vehicle Research, 2005.
[53] [53] BI A Y, FENG Z P. Hierarchical control of underwater vehicle variable ballast systems[C]2018 37th Chinese Control Conference (CCC). Wuhan: IEEE, 2018: 3911–3914.
[54] [54] SYLVESTER A H, DELMERICO J A, TRIMBLE A Z, et al. Variable buoyancy control f a bottom skimming autonomous underwater vehicle[C]2014 OceansSt. John''s. St. John''s: IEEE, 2014: 1–6.
[55] [55] WAN L, ZHANG Z Y, LI Y M, et al. A depth control method of underactuated AUVs based on residual buoyancy identification[C]2018 OCEANSMTSIEEE Kobe TechnoOceans (OTO). Kobe: IEEE, 2018: 1–6.
[57] [57] CLAUS B, BACHMAYER R, COONEY L. Analysis development of a buoyancypitch based depth control algithm f a hybrid underwater glider[C]2012 IEEEOES Autonomous Underwater Vehicles (AUV). Southampton: IEEE, 2012: 1–6.
Get Citation
Copy Citation Text
Ben LI, Zhemin HUANG, Bin HE, Xingbang PAN, Guohua XU. Research status and control technology of autonomous underwater vehicle variable buoyancy system[J]. Chinese Journal of Ship Research, 2022, 17(5): 134
Category: Ship Design and Performance
Received: Apr. 15, 2022
Accepted: --
Published Online: Mar. 26, 2025
The Author Email: