Acta Optica Sinica, Volume. 44, Issue 6, 0601001(2024)

Parameter Retrieval of Transparent Cirrus Clouds over South China Sea Based on Artificial Neural Networks

Wenqiang Lu1,2,3, Shizhi Yang1,2,3、*, Tao Luo1,2,3, Xuebin Li1,2,3, Shengcheng Cui1,2,3, Chen Cheng2,5, Lu Han2,4, Jianjun Shi1,2,3, and Yeyan Han1,2,3
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui , China
  • 4Center for Fundamental Science Research, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • 5Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • show less
    References(24)

    [1] Cziczo D J, Froyd K D, Hoose C et al. Clarifying the dominant sources and mechanisms of cirrus cloud formation[J]. Science, 340, 1320-1324(2013).

    [2] Liou K N. Influence of cirrus clouds on weather and climate processes: a global perspective[J]. Monthly Weather Review, 114, 1167-1199(1986).

    [3] Dessler A E, Yang P. The distribution of tropical thin cirrus clouds inferred from TerraMODIS data[J]. Journal of Climate, 16, 1241-1247(2003).

    [4] Sassen K, Campbell J R. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. part I: macrophysical and synoptic properties[J]. Journal of the Atmospheric Sciences, 58, 481-496(2001).

    [5] Cai Y, Liu Y L, Dai C M et al. Simulation analysis of target and background contrast in condition of cirrus atmosphere[J]. Acta Optica Sinica, 37, 0801001(2017).

    [6] Ren S H, Gao M, Wang M G et al. Attenuation and transmission characteristics of laser propagation in cirrus clouds with a spherical boundary[J]. Spectroscopy and Spectral Analysis, 42, 316-321(2022).

    [7] Zhang X Z, Xu X, Liu B Y. Influence of cirrus clouds on space-to-earth quantum communication channels in free space[J]. Acta Optica Sinica, 41, 2027001(2021).

    [8] Ye S, Fu S M, Li S et al. Optical thickness calculation method of cirrus based on MODIS parameters[J]. Laser & Optoelectronics Progress, 58, 1901003(2021).

    [9] Kox S, Bugliaro L, Ostler A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing[J]. Atmospheric Measurement Techniques, 7, 3233-3246(2014).

    [10] Ji C L, Tao Z M, Hu S X et al. Cirrus measurement using three-wavelength lidar in Hefei[J]. Acta Optica Sinica, 34, 0401001(2014).

    [11] Ackerman S A, Holz R E, Frey R et al. Cloud detection with MODIS: part II. Validation[J]. Journal of Atmospheric and Oceanic Technology, 25, 1073-1086(2008).

    [12] Meyer K, Platnick S. Utilizing the MODIS 1.38 μm channel for cirrus cloud optical thickness retrievals: algorithm and retrieval uncertainties[J]. Journal of Geophysical Research: Atmospheres, 115, 209-222(2010).

    [13] Gao B C, Kaufman Y J, Tanre D et al. Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels[J]. Geophysical Research Letters, 29, 1890-1891(2002).

    [14] Sun W B, Videen G, Kato S et al. A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data[J]. Journal of Geophysical Research: Atmospheres, 116, 207-217(2011).

    [15] Mao F Y, Pan Z X, Henderson D S et al. Vertically resolved physical and radiative response of ice clouds to aerosols during the Indian summer monsoon season[J]. Remote Sensing of Environment, 216, 171-182(2018).

    [17] Yang Y K, Sun W X, Chi Y L et al. Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data[J]. Remote Sensing of Environment, 273, 112971(2022).

    [18] Min M, Li J, Wang F et al. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms[J]. Remote Sensing of Environment, 239, 111616(2020).

    [19] Tan Z H, Ma S, Han D et al. Estimation of cloud base height for FY-4A satellite based on random forest algorithm[J]. Journal of Infrared and Millimeter Waves, 38, 381-388(2019).

    [20] Amell A, Eriksson P, Pfreundschuh S. Ice water path retrievals from Meteosat-9 using quantile regression neural networks[J]. Atmospheric Measurement Techniques, 15, 5701-5717(2022).

    [21] McHardy T M, Campbell J R, Peterson D A et al. Advancing maritime transparent cirrus detection using the advanced baseline imager “cirrus” band[J]. Journal of Atmospheric and Oceanic Technology, 38, 1093-1110(2021).

    [22] Strandgren J, Bugliaro L, Sehnke F et al. Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks[J]. Atmospheric Measurement Techniques, 10, 3547-3573(2017).

    [23] Barnes W L, Xiong X, Salomonson V V. Status of terra MODIS and aqua modis[J]. Advances in Space Research, 32, 2099-2106(2003).

    [24] Sassen K, Wang Z E, Liu D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements[J]. Journal of Geophysical Research, 113, D00A12(2008).

    Tools

    Get Citation

    Copy Citation Text

    Wenqiang Lu, Shizhi Yang, Tao Luo, Xuebin Li, Shengcheng Cui, Chen Cheng, Lu Han, Jianjun Shi, Yeyan Han. Parameter Retrieval of Transparent Cirrus Clouds over South China Sea Based on Artificial Neural Networks[J]. Acta Optica Sinica, 2024, 44(6): 0601001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Feb. 28, 2023

    Accepted: May. 22, 2023

    Published Online: Mar. 15, 2024

    The Author Email: Yang Shizhi (szyang@aiofm.ac.cn)

    DOI:10.3788/AOS230605

    Topics