Acta Optica Sinica, Volume. 44, Issue 6, 0601001(2024)
Parameter Retrieval of Transparent Cirrus Clouds over South China Sea Based on Artificial Neural Networks
Fig. 2. Histograms of transparent cirrus cloud optical depth and top height. (a) Transparent cirrus cloud optical depth; (b) top height of cirrus cloud
Fig. 3. ROC curve of probability of detection
Fig. 4. MPE and
Fig. 5. MPE and MAPE varying with optical depth and top height. (a) Optical depth; (b) top height
Fig. 6. Scatter plots of predicted values and true values. (a) Optical depth; (b) top height
Fig. 8. Distributions of MODIS cloud fraction. (a) Before detection; (b) after detection
Fig. 9. Comparison of detection results. (a) MODIS clear sky observation results; (b) detected results of neural network; (c) CALIOP observation results
Fig. 10. Comparison of inverse values and true values. (a) Optical depth; (b) top height
Fig. 12. Distributions of optical depth and top height of transparent cirrus clouds undetected by MODIS. (a) Optical depth; (b) top height
|
|
|
Get Citation
Copy Citation Text
Wenqiang Lu, Shizhi Yang, Tao Luo, Xuebin Li, Shengcheng Cui, Chen Cheng, Lu Han, Jianjun Shi, Yeyan Han. Parameter Retrieval of Transparent Cirrus Clouds over South China Sea Based on Artificial Neural Networks[J]. Acta Optica Sinica, 2024, 44(6): 0601001
Category: Atmospheric Optics and Oceanic Optics
Received: Feb. 28, 2023
Accepted: May. 22, 2023
Published Online: Mar. 15, 2024
The Author Email: Yang Shizhi (szyang@aiofm.ac.cn)
CSTR:32393.14.AOS230605