Chinese Journal of Lasers, Volume. 48, Issue 15, 1507001(2021)

Speed-of-Sound Heterogeneity Compensation Method in Photoacoustic Computed Tomographic Image Reconstruction

Kexin Deng1、**, Manxiu Cui2, Hongzhi Zuo2, Xuanhao Wang2, Chuangjian Cai2, Jianwen Luo1、***, and Cheng Ma2、*
Author Affiliations
  • 1Department of Biomedical Engineering, Tsinghua University, Beijing 100086
  • 2Department of Electronic Engineering, Tsinghua University, Beijing 100086
  • show less
    References(71)

    [1] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [2] Razansky D, Distel M, Vinegoni C et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 3, 412-417(2009).

    [3] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [4] Filonov G S, Krumholz A, Xia J et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe[J]. Angewandte Chemie, 124, 1477-1480(2011).

    [5] Yao J, Maslov K I, Zhang Y et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 16, 076003(2011).

    [6] Zhang X M, Weng C C, Zhu L L et al. Application of photoacoustic elastography technique in arterial blood-pressure monitoring[J]. Laser & Optoelectronics Progress, 56, 161701(2019).

    [7] Yu J W, Wang X H, Feng J C et al. Antimonene nanoflakes as a photoacoustic imaging contrast agent for tumor in vivo imaging[J]. Chinese Journal of Lasers, 47, 0207033(2020).

    [8] Wu H Q, Wang H Y, Xie W M et al. Potential applications of photoacoustic imaging in early cancer diagnosis and treatment[J]. Laser & Optoelectronics Progress, 56, 070001(2019).

    [9] Liu Q, Jin T, Chen Q et al. Research progress of miniaturized photoacoustic imaging technology in biomedical field[J]. Chinese Journal of Lasers, 47, 0207019(2020).

    [10] Wang T, Liu W, Tian C. Combating acoustic heterogeneity in photoacoustic computed tomography: a review[J]. Journal of Innovative Optical Health Sciences, 13, 2030007(2020).

    [11] Bamber J C. Acoustical characteristics of biological media[M]. //Encyclopedia of acoustics, 1703-1726(2007).

    [12] Knox C, Moradifam A. Determining both the source of a wave and its speed in a medium from boundary measurements[J]. Inverse Problems, 36, 025002(2020).

    [13] Yuan X, Wang L V. Effects of acoustic heterogeneity in breast thermoacoustic tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50, 1134-1146(2003).

    [15] Huang C, Nie L M, Schoonover R W et al. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data[J]. Journal of Biomedical Optics, 17, 066016(2012).

    [16] Merčep E, Herraiz J L, Deán-Ben X L et al. Transmission-reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals[J]. Light: Science & Applications, 8, 18(2019).

    [18] Willemink R G H, Manohar S, Purwar Y et al. Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements[J]. Proceedings of SPIE, 6920, 692013(2008).

    [19] Manohar S, Willemink R G H, van der Heijden F et al. Concomitant speed-of-sound tomography in photoacoustic imaging[J]. Applied Physics Letters, 91, 131911(2007).

    [20] Huang C, Wang K, Schoonover R W et al. Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation[J]. IEEE Transactions on Computational Imaging, 2, 136-149(2016).

    [21] Matthews T P, Poudel J, Li L et al. Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography[J]. SIAM Journal on Imaging Sciences, 11, 1560-1588(2018).

    [22] Zhang C, Wang Y Y. A reconstruction algorithm for thermoacoustic tomography with compensation for acoustic speed heterogeneity[J]. Physics in Medicine and Biology, 53, 4971-4982(2008).

    [23] Shan H M, Wiedeman C, Wang G et al. Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach[J]. Proceedings of SPIE, 11105, 1110504(2019).

    [24] Zhou Y, Yao J J, Wang L V. Tutorial on photoacoustic tomography[J]. Journal of Biomedical Optics, 21, 061007(2016).

    [25] Watson N J. Ultrasound tomography[M]. //Wang M. Industrial tomography: systems and applications, 235-261(2015).

    [26] Xu Y, Wang L V, Ambartsoumian G et al. Reconstructions in limited-view thermoacoustic tomography[J]. Medical Physics, 31, 724-733(2004).

    [27] Xia J, Yao J J, Wang L H V. Photoacoustic tomography: principles and advances[J]. Progress in Electromagnetics Research, 147, 1-22(2014).

    [28] Nyayapathi N, Xia J. Photoacoustic imaging of breast cancer: a mini review of system design and image features[J]. Journal of Biomedical Optics, 24, 1-13(2019).

    [29] Li L, Zhu L R, Ma C et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 1, 0071(2017).

    [30] Lin L, Hu P, Shi J et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 9, 2352(2018).

    [31] Cai C J, Wang X H, Si K et al. Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo[J]. Biomedical Optics Express, 10, 3447-3462(2019).

    [32] Xu M H, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography[J]. Physical Review E, 71, 016706(2005).

    [33] Pramanik M. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography[J]. Journal of the Optical Society of America A, 31, 621-627(2014).

    [34] Marczak W. Water as a standard in the measurements of speed of sound in liquids[J]. The Journal of the Acoustical Society of America, 102, 2776-2779(1997).

    [35] Gu M D. Investigating a relationship between speed of sound and hydrogel water content via ultrasound for future articular cartilage applications[D](2013).

    [36] Poudel J, Matthews T P, Li L et al. Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method[J]. Journal of Biomedical Optics, 22, 41018(2017).

    [37] Treeby B E, Varslot T K, Zhang E Z et al. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach[J]. Journal of Biomedical Optics, 16, 090501(2011).

    [38] Mandal S, Nasonova E, Deán-Ben X L et al. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging[J]. Photoacoustics, 2, 128-136(2014).

    [39] Jin Z, Anastasio M A. Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography[J]. Proceedings of SPIE, 6086, 608619(2006).

    [40] Jose J, Willemink R G, Resink S et al. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption[J]. Optics Express, 19, 2093-2104(2011).

    [41] Resink S, Jose J, Willemink R G H et al. Multiple passive element enriched photoacoustic computed tomography[J]. Optics Letters, 36, 2809-2811(2011).

    [42] Fehm T F, Deán-Ben X L, Razansky D. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe[J]. Applied Physics Letters, 105, 173505(2014).

    [43] Jiang H, Yuan Z, Gu X. Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 23, 878-888(2006).

    [44] Yuan Z, Zhang Q Z, Jiang H B. Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography[J]. Optics Express, 14, 6749-6754(2006).

    [45] Yuan Z, Jiang H B. Simultaneous recovery of tissue physiological and acoustic properties and the criteria for wavelength selection in multispectral photoacoustic tomography[J]. Optics Letters, 34, 1714-1716(2009).

    [46] Ding T, Ren K, Vallélian S. A one-step reconstruction algorithm for quantitative photoacoustic imaging[J]. Inverse Problems, 31, 095005(2015).

    [47] Zhang J, Wang K, Yang Y Y et al. Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm[J]. Proceedings of SPIE, 6856, 68561F(2008).

    [48] Liu H Y, Uhlmann G. Determining both sound speed and internal source in thermo- and photo-acoustic tomography[J]. Inverse Problems, 31, 105005(2015).

    [49] Stefanov P, Uhlmann G. Instability of the linearized problem in multiwave tomography of recovery both the source and the speed[J]. Inverse Problems & Imaging, 7, 1367-1377(2013).

    [50] Zhang H P, Gu J Y, Bai M et al. Value of shear wave elastography with maximal elasticity in differentiating benign and malignant solid focal liver lesions[J]. World Journal of Gastroenterology, 26, 7416-7424(2020).

    [51] Manduca A, Oliphant T E, Dresner M A et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity[J]. Medical Image Analysis, 5, 237-254(2001).

    [52] Persson P O, Strang G. A simple mesh generator in MATLAB[J]. SIAM Review, 46, 329-345(2004).

    [53] Treeby B E, Cox B T. K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields[J]. Journal of Biomedical Optics, 15, 021314(2010).

    [54] Cha J W, So P T C. A Shack-Hartmann wavefront sensor based adaptive optics system for multiphoton microscopy[C]. //Biomedical Optics 2008, March 16-19, 2008, St. Petersburg, Florida, United States, BMD52(2008).

    [55] Tuohy S, Podoleanu A G. Depth-resolved wavefront aberrations using a coherence-gated Shack-Hartmann wavefront sensor[J]. Optics Express, 18, 3458-3476(2010).

    [56] Aviles-Espinosa R, Andilla J, Porcar-Guezenec R et al. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy[J]. Biomedical Optics Express, 2, 3135-3149(2011).

    [57] Tao X, Fernandez B, Azucena O et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 36, 1062-1064(2011).

    [60] Azucena O, Crest J, Kotadia S et al. Adaptive optics wide-field microscopy using direct wavefront sensing[J]. Optics Letters, 36, 825-827(2011).

    [61] Wang K, Sun W, Richie C T et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue[J]. Nature Communications, 6, 7276(2015).

    [62] Albert O, Sherman L, Mourou G et al. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Optics Letters, 25, 52-54(2000).

    [63] Booth M J, Neil M A, Juskaitis R et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences, 99, 5788-5792(2002).

    [64] Cui M X, Zuo H Z, Wang X H et al. Adaptive photoacoustic computed tomography[J]. Photoacoustics, 21, 100223(2021).

    [65] Guo Q H, Ping L. LMMSE turbo equalization based on factor graphs[J]. IEEE Journal on Selected Areas in Communications, 26, 311-319(2008).

    [66] Vidale J E. Finite-difference calculation of traveltimes in three dimensions[J]. Geophysics, 55, 521-526(1990).

    [67] Park S, Jang J, Kim J et al. Real-time triple-modal photoacoustic, ultrasound, and magnetic resonance fusion imaging of humans[J]. IEEE Transactions on Medical Imaging, 36, 1912-1921(2017).

    [68] Olefir I, Mercep E, Burton N C et al. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging[J]. Journal of Biomedical Optics, 21, 86005(2016).

    [71] Nguyen N Q, Huang L J. Ultrasound bent-ray tomography using both transmission and reflection data[J]. Proceedings of SPIE, 9040, 90400R(2014).

    [72] Watson N J. Ultrasound tomography[M]. //Wang M. Industrial tomography: systems and applications, 235-261(2015).

    Tools

    Get Citation

    Copy Citation Text

    Kexin Deng, Manxiu Cui, Hongzhi Zuo, Xuanhao Wang, Chuangjian Cai, Jianwen Luo, Cheng Ma. Speed-of-Sound Heterogeneity Compensation Method in Photoacoustic Computed Tomographic Image Reconstruction[J]. Chinese Journal of Lasers, 2021, 48(15): 1507001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Apr. 7, 2021

    Accepted: May. 20, 2021

    Published Online: Aug. 12, 2021

    The Author Email: Kexin Deng (dkx17@mails.tsinghua.edu.cn), Jianwen Luo (jianwen_luo@mail.tsinghua.edu.cn), Cheng Ma (cheng_ma@mail.tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1507001

    Topics