Acta Optica Sinica, Volume. 42, Issue 22, 2230001(2022)
Fluorescence Background Subtraction Algorithm of UV Raman Based on Morphology and Polynomial Fitting
[1] Das R S, Agrawal Y K. Raman spectroscopy: recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 57, 163-176(2011).
[2] Bai H X, Yang F, Li D Y et al. Multi-component substance classification and recognition based on surface-enhanced Raman spectroscopy[J]. Acta Optica Sinica, 41, 2024001(2021).
[3] Wang Q, Zeng W D, Xia Z P et al. Recognition of food-borne pathogenic bacteria by Raman spectroscopy based on random forest algorithm[J]. Chinese Journal of Lasers, 48, 0311002(2021).
[4] Xu H D, Lin L L, Li Z et al. Nephrite origin identification based on Raman spectroscopy and pattern recognition algorithms[J]. Acta Optica Sinica, 39, 0330001(2019).
[5] Hwang J, Choi N, Park A et al. Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis[J]. Journal of Molecular Structure, 1039, 130-136(2013).
[6] Liu J K, Li C Y, Lü H et al. Classification and recognition of disposable masks based on Raman spectroscopy and machine learning[J]. Laser & Optoelectronics Progress, 58, 1630004(2021).
[7] Meng X, Wang L, Wang J J et al. All solid-state 266 nm laser Raman spectrometer[J]. Acta Optica Sinica, 41, 1530002(2021).
[8] Almaviva S, Chirico R, Nuvoli M et al. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: characterization by PCA and ROC analyzes[J]. Talanta, 144, 420-426(2015).
[9] Hug W F, Bhartia R, Sijapati K et al. Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II[J]. Proceedings of SPIE, 9073, 90730I(2014).
[10] Chirico R, Almaviva S, Colao F et al. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications[J]. Sensors, 16, 8(2015).
[11] Carroll J A. Eye-safe UV stand-off Raman spectroscopy for explosive detection in the field[D](2015).
[12] Korinth F, Shaik T A, Popp J et al. Assessment of shifted excitation Raman difference spectroscopy in highly fluorescent biological samples[J]. The Analyst, 146, 6760-6767(2021).
[13] Sharma S K, Misra A K, Lucey P G et al. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters[J]. Applied Spectroscopy, 60, 871-876(2006).
[14] Lednev I K, Ermolenkov V V, He W et al. Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins[J]. Analytical and Bioanalytical Chemistry, 381, 431-437(2005).
[15] Sparrow M C, Jackovitz J F, Munro C H et al. New 224 nm hollow cathode laser-UV Raman spectrometer[J]. Applied Spectroscopy, 55, 66-70(2001).
[16] Biswas S, Ghoshal D, Hazra R. A new algorithm of image segmentation using curve fitting based higher order polynomial smoothing[J]. Optik, 127, 8916-8925(2016).
[17] Rogers S S, Waigh T A, Zhao X B et al. Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight[J]. Physical Biology, 4, 220-227(2007).
[18] Fang Y H, Kong C, Lan T G et al. Denoising and baseline correction of spectrum by wavelet transform[J]. Optics and Precision Engineering, 14, 1088-1092(2006).
[19] Koch M, Suhr C, Roth B et al. Iterative morphological and mollifier-based baseline correction for Raman spectra[J]. Journal of Raman Spectroscopy, 48, 336-342(2017).
[20] Perez-Pueyo R, Soneira M J, Ruiz-Moreno S. Morphology-based automated baseline removal for Raman spectra of artistic pigments[J]. Applied Spectroscopy, 64, 595-600(2010).
[21] Krishna H, Majumder S K, Gupta P K. Range-independent background subtraction algorithm for recovery of Raman spectra of biological tissue[J]. Journal of Raman Spectroscopy, 43, 1884-1894(2012).
[22] Wang H P, Chu X L, Chen P et al. Research and application progress of algorithms for spectral baseline correction[J]. Chinese Journal of Analytical Chemistry, 49, 1270-1281(2021).
[23] Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. The Analyst, 135, 1138-1146(2010).
[24] Hug W F, Nguyen Q, Reid M et al. Deep UV Raman and fluorescence spectroscopy for real-time in situ process monitoring[J]. Proceedings of SPIE, 11390, 92-100(2020).
[25] Hug W F, Bhartia R, Taspin A et al. Status of miniature integrated UV resonance fluorescence and Raman sensors for detection and identification of biochemical warfare agents[J]. Proceedings of SPIE, 5994, 136-147(2005).
[26] Zhao J H, Lui H, McLean D I et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy[J]. Applied Spectroscopy, 61, 1225-1232(2007).
[27] Chen Y L, Dai L K. An automated baseline correction method based on iterative morphological operations[J]. Applied Spectroscopy, 72, 731-739(2018).
[28] di Genova D, Sicola S, Romano C et al. Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content[J]. Chemical Geology, 475, 76-86(2017).
Get Citation
Copy Citation Text
Ganshang Si, Jiaxiang Liu, Zhengang Li, Zhiqiang Ning, Yonghua Fang. Fluorescence Background Subtraction Algorithm of UV Raman Based on Morphology and Polynomial Fitting[J]. Acta Optica Sinica, 2022, 42(22): 2230001
Category: Spectroscopy
Received: Apr. 15, 2022
Accepted: May. 25, 2022
Published Online: Nov. 7, 2022
The Author Email: Fang Yonghua (yhfang@aiofm.ac.cn)