Collection Of theses on high power laser and plasma physics, Volume. 12, Issue 1, 926609(2014)
Ray-tracing method to analyze and quantify the light enhancement around subsurface defects in transparent materials
[1] [1] Feit M. D. and Rubenchik A. M., "Influence of subsurface cracks on laser induced surface damage," Proc. SPIE 5273, 264-271 (2004).
[2] [2] Gao X., Feng G. Y., Han J. H. and Zhai L. L., "Investigation of laser-induced damage by various initiators on the subsurface of fused silica," Opt. Express 20, 22095-22101 (2012).
[3] [3] Neauport J., Lamaignere L., Bercegol H., Pilon F. and Birolleau J. C., "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[4] [4] Stevens-Kalceff M. A., Stesmans A. and Wong J., "Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm," Appl. Phys. Lett. 80, 758-760 (2002).
[5] [5] Liu H. J., Huang J., Wang F. R., Zhou X. D., Zhou X. Y., Sun L. X., Jiang X. D., Sui Z. and Zheng W. G., "Subsurface defects of fused silica optics and laser induced damage at 351 nm," Opt. Express 21, 12204-12217 (2013).
[6] [6] Miller P. E., Suratwala T. I., Wong L. L., Feit M. D., Menapace J. A., Davis P. J. and Steele R. A., "The Distribution of Subsurface Damage in Fused Silica," Proc. SPIE 5991, 599101+25 (2005).
[7] [7] Windecker R., Franz S. and Tiziani H. J., "Optical Roughness Measurements with Fringe Projection," Appl. Opt. 38, 2837-2842 (1999).
[8] [8] Werne T., Testorf M. and Gibson U., "Local-field enhancement in metal-dielectric nanocylinders with complex cross sections," J. Opt. Soc. Am. A 23, 2299-2306 (2006).
[9] [9] Li L., Xiang X., Zu X. T., Wang H. J., Yuan X. D., Jiang X. D., Zheng W. G. and Dai W., "Numerical simulation of the modulation to incident laser by the repaired damage site in a fused silica subsurface," Chin. Phys. B 20, 074209+5 (2011).
[10] [10] Bloembergen N., "Role of Cracks, Pores, and Absorbing Inclusions on Laser Induced Damage Threshold at Surfaces of Transparent Dielectrics," Appl. Opt. 12, 661-664 (1973).
[11] [11] Jacobs S., Golini D., Hsu Y., Puchebner E., et al., "Magnetorheological Finishing: A Deterministic Process for Optics Manufacturing, " Proc. SPIE 2576, 372-382 (1995).
[12] [12] Génin F. Y., Salleo A., Pistor T. V. and Chase L. L., "Role of light intensification by cracks in optical breakdown on surfaces," J. Opt. Soc. Am. A 18, 2607-2616 (2001).
[13] [13] Li L., Xiang X., Yuan X. D., He S. B., Jiang X. D., Zheng W. G. and Zu X. T., "Effect of fused silica subsurface defect site density on light intensification," Chin. Phys. B 22, 054207+5 (2013).
[14] [14] Hua J. R., Li L., Xiang X. and Zu X. T., "Three-dimensional numerical simulation of light field modulation in the vicinity of inclusions in silica subsurface," Acta. Phys. Sin. 60, 044206+5 (2011).
[15] [15] Zhang C. L., Wang Z. G., Xiang X., Liu C. M., Li L., Yuan X. D., He S. B. and Zu X. T., "Simulation of field intensification induced by pit-shaped crack on fused silica rear-surface," Acta. Phys. Sin. 61, 114210+8 (2012).
[16] [16] Stuart B. C., Feit M. D., Herman S., Rubenchik A. M., Shore B. W. and Perry M. D., "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[17] [17] Suratwala T. I., et al., "HF-based etching processes for improving laser damage resistance of fused silica optical surfaces," J. Am. Cer. Soc. 94, 416-428 (2011).
[18] [18] Feit M. D., Suratwala T. I., Wong L. L., Steele W. A., Miller P. E. and Bude J. D., "Modeling wet chemical Etching of surface flaws on fused silica," Proc. SPIE 7504, 75040L1+12 (2009).
[19] [19] Jiang Y, Xiang X, Yuan X D, Liu C M, Wang H J, Luo C S, He S B, Lv H B, Zheng W G and Zu X T, "Characterization of 355nm laser-induced damage of mitigated damage sites in fused silica," Laser Phys. 23, 026001+7 (2013).
[20] [20] Miller P. E., Bude J. D., Suratwala T. I., Shen N., Laurence T. A., Steele W. A., Menapace J., Feit M. D. and Wong L. L., "Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces," Opt. Lett. 35, 2702-2704 (2010).
[21] [21] Chen M, Xiang X, Jiang Y, Zu X T, Yuan X D, Zheng W G, Wang H J, Li X B, Lv H B, Jiang X D and Wang C C, "Enhancement of laser induced damage threshold of fused silica by acid etching combined with UV laser conditioning," High Power Laser and Particle Beams 22, 1383-1387 (2012).
[22] [22] Wyrowski F. and Kuhn M., "Introduction to field tracing," J. Mod. Optics 58, 449-466 (2011).
[23] [23] Swanson G. J., "Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements," MIT Tech. Rep. 914, 1-27 (1991).
[24] [24] Wang H. J., Kuang D. F. and Fang Z. L., "Diffraction analysis of blazed transmission gratings with a modified extended scalar theory," J. Opt. Soc. Am. A 25, 1253-1259 (2008).
[25] [25] Lambropoulos J. C., "From abrasive size to subsurface damage in grinding," Optical Fabrication and Testing OSA Technical Digest 17, 1 (2000).
[26] [26] Araujo M. P., Carvalho S. A. and Leo S. D., "The asymmetric goos-hanchen effect," J. Opt. 16, 015702+7 (2013).
Get Citation
Copy Citation Text
Rong Wu, Dongfeng Zhao, Lei Zhang, Ping Shao, Neng Hua, Zunqi Lin. Ray-tracing method to analyze and quantify the light enhancement around subsurface defects in transparent materials[J]. Collection Of theses on high power laser and plasma physics, 2014, 12(1): 926609
Category:
Received: --
Accepted: --
Published Online: May. 27, 2017
The Author Email: