Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 7, 945(2023)

Lightweight and high-precision object detection algorithm based on YOLO framework

Xin-chuan FAN and Chun-mei CHEN*
Author Affiliations
  • School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China
  • show less
    References(27)

    [3] SONG R, SHI Z P, QU Y et al. Road scene understanding for autonomous driving via deep residual learning[J]. Application Research of Computers, 36, 2825-2829, 2871(2019).

    [10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOV4: optimal speed and accuracy of object detection[J/OL]. arXiv, 2004. 10934(2020).

    [13] GE Z, LIU S T, WANG F et al. YOLOX: exceeding YOLO series in 2021[J/OL]. arXiv, 2107. 08430(2021).

    [14] HOWARD A G, ZHU M L, CHEN B et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv, 1704. 04861(2017).

    [25] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J/OL]. arXiv, 2205. 12740(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xin-chuan FAN, Chun-mei CHEN. Lightweight and high-precision object detection algorithm based on YOLO framework[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(7): 945

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 13, 2022

    Accepted: --

    Published Online: Jul. 31, 2023

    The Author Email: Chun-mei CHEN (47920787@qq.com)

    DOI:10.37188/CJLCD.2022-0328

    Topics