Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 7, 945(2023)
Lightweight and high-precision object detection algorithm based on YOLO framework
[3] SONG R, SHI Z P, QU Y et al. Road scene understanding for autonomous driving via deep residual learning[J]. Application Research of Computers, 36, 2825-2829, 2871(2019).
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOV4: optimal speed and accuracy of object detection[J/OL]. arXiv, 2004. 10934(2020).
[13] GE Z, LIU S T, WANG F et al. YOLOX: exceeding YOLO series in 2021[J/OL]. arXiv, 2107. 08430(2021).
[14] HOWARD A G, ZHU M L, CHEN B et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv, 1704. 04861(2017).
[25] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J/OL]. arXiv, 2205. 12740(2022).
Get Citation
Copy Citation Text
Xin-chuan FAN, Chun-mei CHEN. Lightweight and high-precision object detection algorithm based on YOLO framework[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(7): 945
Category: Research Articles
Received: Nov. 13, 2022
Accepted: --
Published Online: Jul. 31, 2023
The Author Email: Chun-mei CHEN (47920787@qq.com)