Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 7, 945(2023)

Lightweight and high-precision object detection algorithm based on YOLO framework

Xin-chuan FAN and Chun-mei CHEN*
Author Affiliations
  • School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China
  • show less
    Figures & Tables(15)
    Model architecture of YOLOXs
    Focus diagram and practical effect
    Structure of E-MobileNetv3 bneck
    Embedding mode of SSH
    Angle factor in border regression
    Heat maps of SSH receptive field and final output heat map
    Detection effect compared on MS COCO
    Detection effect compared on UA-DETRAC
    Comparison of detection effects in traffic monitoring scenarios
    • Table 1. Comparison experiment of lightweight backbone network

      View table
      View in Article

      Table 1. Comparison experiment of lightweight backbone network

      算法参数量/MGFLOPsmAP@0.5/%
      ShuffleNetv2-0.52.574.932.4
      Ghost-0.55.3213.236.6
      MobileNetv2-0.51.434.038.9
      MobileNetv3-0.51.293.740.6
      E-MobileNetv3-0.51.273.841.6
    • Table 2. Verification experiment of SSH embedding mode

      View table
      View in Article

      Table 2. Verification experiment of SSH embedding mode

      算法参数量/MGFLOPsmAP@0.5/%
      FPN0.62.433.65
      FPN+SSH1.273.634.72
      SSH+FPN1.294.040.36
    • Table 3. Experimental results of different activation functions in Neck part

      View table
      View in Article

      Table 3. Experimental results of different activation functions in Neck part

      ReluHard-SwishMishmAP@0.5/%
      40.36
      40.44
      40.60
    • Table 4. Ablation experiments

      View table
      View in Article

      Table 4. Ablation experiments

      FocusECACBAMGIOUDIOUCIOUSIOUSSHPaFPNSoft-NMSYOLOX参数量/MmAP@0.5/%
      1.2940.60
      1.29140.66
      1.2841.7
      1.2741.6
      0.633.65
      1.2737.28
      1.2738.8
      2.3545.2
      1.2745.6
      2.0947.8
      2.0952.8
      2.0950.6
      2.0954.5
    • Table 5. Comparative experiments on MS COCO

      View table
      View in Article

      Table 5. Comparative experiments on MS COCO

      算法Backbone参数量/MGFLOPsmAP@0.5/%
      YOLOv4-tinyCSPDarkNet535.7816.444.6
      YOLOv5sCSPDarkNet536.7316.454.8
      YOLOXsCSPDarkNet538.5126.658.2
      YOLOXsMobileNetv34.716.153.2
      YOLOv5sMobileNetv33.246.550.3
      Faster R-CNNResnet5041.75-57.2
      Mask R-CNNResnet50+FPN44.40-58.5
      Cascade R-CNNResnet50+FPN69.39-58.3
      SSDVGG1636.04-49.1
      SSDMobileNetv24.23-35.8
      FCOSResnet5032.30-55.3
      CenterNetResnet1814.4-46.2
      EfficientNet-b3-19.98-59.8
      CentripetalNetHourglassNet205.76-61.9
      OursE-MobileNetv33.011.458.6
    • Table 6. Comparative experiments on the UA-DETRAC

      View table
      View in Article

      Table 6. Comparative experiments on the UA-DETRAC

      算法AP@0.5/%FPS
      CarBusVanOthers
      YOLOv3_SPP87.486.95957.5204
      YOLOv5s84.684.756.539.4303
      YOLOXs85.8865743.6250
      Ours86.686.361.247.9286
    Tools

    Get Citation

    Copy Citation Text

    Xin-chuan FAN, Chun-mei CHEN. Lightweight and high-precision object detection algorithm based on YOLO framework[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(7): 945

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 13, 2022

    Accepted: --

    Published Online: Jul. 31, 2023

    The Author Email: Chun-mei CHEN (47920787@qq.com)

    DOI:10.37188/CJLCD.2022-0328

    Topics