Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415006(2025)

Research on 2D Laser Scan Matching Algorithm Based on Corner Features

Yanqing Wang1、*, Deqiang Zhou1, Hao Xu1, Weifeng Sheng1, Wenjuan Zuo1, Qing Xi2, and Quyan Chen2
Author Affiliations
  • 1School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu , China
  • 2Wuxi Hongyi Intelligent Technology Co., Ltd.Wuxi 214000, Jiangsu , China
  • show less
    Figures & Tables(18)
    Definition of discrete points and discrete point sets in original point cloud data
    SWC algorithm for identifying whether detected point is noise
    LiDAR measurement model
    Filtering of raw point cloud data using SWC algorithm
    Mapping of two-dimensional point cloud in three-dimensional space
    Remove outliers and fit extracted lines. (a) Fit lines close to vertical features; (b) fit regular line features
    Flowchart for determining the type of intersection
    Matching feature points. (a) Point clouds of target frame and matching frame; (b) corresponding feature points after matching
    Solve pose transformation by non-mirror similarity affine transformation of successfully matched feature points
    Collect 36 frames of data with equiangular rotation 360° at pentagon position, and calculate covariance of intersection coordinates
    Calculation time per frame and number of intersections in a welding laboratory environment. (a) Real laboratory scenes; (b) 2D mapping of laboratory
    Computation time and number of intersection points for each frame of data in a robotics laboratory environment. (a) Robotics laboratory; (b) corresponding 2D mapping
    Test scenario and trajectory diagram. (a) Experimental scenarios; (b) calculation trajectories of different matching algorithms
    • Table 1. Euclidean distance in ascending order between a specific intersection point and remaining intersection points in target frame along with attributes of remaining points of Fig. 6(a)

      View table

      Table 1. Euclidean distance in ascending order between a specific intersection point and remaining intersection points in target frame along with attributes of remaining points of Fig. 6(a)

      Intersection 1Intersection 2Intersection 6Intersection 7
      Distance /mLabelDistance /mLabelDistance /mLabelDistancem /mLabel
      0-10-10-101
      0.747325-10.747325593-10.86645210.866452-1
      0.775649-10.77374532401.611255-11.5980301
      1.08782901.072722933-11.82395211.812103-1
      5.06256605.086140606-13.13257903.087903-1
      5.157471-15.11508516803.213890-13.2312500
      6.587579-16.57601281717.423185-17.4002980
      6.63513916.623814912-17.45779507.454086-1
      8.198835-18.17404369018.198835-18.174043-1
      8.22497518.226792213-18.226792-18.224975-1
    • Table 2. Feature point descriptions in matching frame of Fig. 6(b)

      View table

      Table 2. Feature point descriptions in matching frame of Fig. 6(b)

      Intersection 1Intersection 2Intersection 6Intersection 7
      Distance /mLabelDistance /mLabelDistance /mLabelDistance /mLabel
      0-10-10101
      0.85673410.89118210.856734-10.891182-1
      1.30692011.65442111.248031-11.6156211
      1.528990-11.89436311.53271111.812283-1
      1.654421-12.96134111.61562112.863652-1
      1.81228313.053057-11.894363-13.0202191
      5.796647-17.451069-15.77901907.3946400
      5.86047407.50452405.824379-17.429701-1
      6.549020-18.203441-16.529755-18.145376-1
      6.604060-18.250449-16.569513-18.177174-1
    • Table 3. Comparison of accuracy and time consumption between SWC-ICE algorithm and other matching algorithms under different rotation angles

      View table

      Table 3. Comparison of accuracy and time consumption between SWC-ICE algorithm and other matching algorithms under different rotation angles

      Classical matching algorithm
      PL-ICPGICPNDTSWC-ICE
      Angle /(°)Time /msAngle /(°)Time /msAngle /(°)Time /msAngle /(°)Time /ms
      1.93 (2.2×10-82.51.82 (7.3×10-4)347.81.84 (8.4×10-21286.91.02 (1.7×10-152.1
      4.93 (3.2×10-3)3.34.92 (5.2×10-2870.64.72 (8.4×10-21875.44.82 (8.4×10-255.8
      9.83 (1.2×10-2)3.99.85 (4.2×10-3)799.211.35 (1.1462515.29.35 (9.1×10-253.3
      4.97 (4.773)5.818.42 (9.5×10-21449.019.65 (1.9×10-1)4080.118.95 (6.5×10-3)59.2
      11.60 (6.7×10-1)9.311.17 (2.0×10-1)1095.130.02 (2.2×10-1)6024.230.15 (9.5×10-356.4
    • Table 4. Comparison of accuracy and time consumption between SWC-ICE algorithm and other matching algorithms under different translation distances

      View table

      Table 4. Comparison of accuracy and time consumption between SWC-ICE algorithm and other matching algorithms under different translation distances

      SWC-ICE and other classical matching algorithms
      PL-ICPGICPNDTSWC-ICE
      Distance /cmTime /msDistance /cmTime /msDistance /cmTime /msDistance /cmTime /ms
      10.0 (8.2×10-6)2.69.8 (1.4×10-3386.110.5 (5.5×10-2)5258.59.9 (3.3×10-256.5
      20.0 (1.4×10-42.319.7 (2.4×10-3280.621.7 (3.3×10-2)2847.319.0 (2.9×10-243.0
      30.0 (2.6×10-43.126.1 (9.7×10-2260.928.4 (9.2×10-2)2639.827.1 (5.2×10-2)38.9
      40.0 (1.9×10-42.226.6 (3.2×10-3)185.023.5 (1.4×10-1)3767.837.3 (5.3×10-239.7
      50.0 (3.2×10-41.618.3 (3.2×10-3135.236.6 (1.5×10-14313.147.3 (2.9×10-241.0
    • Table 5. Path estimation bias and length of different algorithms at 0.4 m displacement, 20° rotation, and average matching time

      View table

      Table 5. Path estimation bias and length of different algorithms at 0.4 m displacement, 20° rotation, and average matching time

      Estimation methodx position error /my position error/mAngular error /(°)Path length /mAverage time consumption /ms
      NDT10.0014.2089.736.23326.8
      PL-ICP29.700.7479.831.643.8
      GICP20.440.1470.721.87248.8
      SWC-ICE+PL-ICP0.150.178.635.5558.9
    Tools

    Get Citation

    Copy Citation Text

    Yanqing Wang, Deqiang Zhou, Hao Xu, Weifeng Sheng, Wenjuan Zuo, Qing Xi, Quyan Chen. Research on 2D Laser Scan Matching Algorithm Based on Corner Features[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 29, 2024

    Accepted: Jul. 29, 2024

    Published Online: Feb. 14, 2025

    The Author Email:

    DOI:10.3788/LOP240994

    CSTR:32186.14.LOP240994

    Topics