Microelectronics, Volume. 55, Issue 1, 21(2025)
Investigation of Single Event Transient Effects in InP-based HEMT
[1] [1] CHEN Y, YANG L N, YUE H B, et al. Investigation on effect of doped InP subchannel thickness and delta-doped InP layer of composite channel HEMT[J]. IEEE Transactions on Electron Devices, 2022, 69(3): 988-993.
[2] [2] HARRYSSON RODRIGUES I, VOROBIEV A. Low-field mobility and high-field velocity of charge carriers in InGaAs/InP high-electron-mobility transistors[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1786-1791.
[3] [3] TONG Z H, DING P, SU Y B, et al. Surface improvement of InAlAs/InGaAs InP-based HEMT through treatments of UV/ozone and TMAH[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 600-607.
[4] [4] HAMADA H, TSUTSUMI T, PANDER A, et al. 220–325-GHz 25-dB-gain differential amplifier with high common-mode-rejection circuit in 60-nm InP-HEMT technology[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 709-712.
[5] [5] AJAYAN J, NIRMAL D, MATHEW R, et al. A critical review of design and fabrication challenges in InP HEMTs for future terahertz frequency applications[J]. Materials Science in Semiconductor Processing, 2021, 128: 105753.
[6] [6] CHA E, WADEFALK N, MOSCHETTI G, et al. InP HEMTs for sub-mW cryogenic low-noise amplifiers[J]. IEEE Electron Device Letters, 2020, 41(7): 1005-1008.
[7] [7] HUANG Q, JIANG J. An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools[J]. Progress in Nuclear Energy, 2019, 114: 105-120.
[9] [9] JACKSON E M, WEAVER B D, SHOJAH-ARDALAN S, et al. Irradiation effects in InGaAs/InAlAs high electron mobility transistors[J]. Applied Physics Letters, 2001, 79(14): 2279-2281.
[10] [10] SUN S X, CHANG M M, ZHANG C, et al. Proton irradiation effect on InP-based high electron mobility transistor by numerical simulation with non-uniform induced acceptor-like defects[J]. Physica Status Solidi Rapid Research Letters, 2018, 12(6): 1800027.
[11] [11] SUN S X, DING P, JIN Z, et al. Effect of electron irradiation fluence on InP-based high electron mobility transistors[J]. Nanomaterials, 2019, 9(7): 967.
[12] [12] SUN S X, YANG B, ZHONG Y H, et al. Degradation mechanisms of InP-based high-electron-mobility transistors under 1 MeV electron irradiation[J]. Journal of Physics D: Applied Physics, 2020, 53(17): 175107.
[13] [13] ZHANG J L, DING P, MEI B, et al. The effects and mechanisms of 2 MeV proton irradiation on InP-based high electron mobility transistors[J]. Applied Physics Letters, 2022, 120(10): 103501.
[14] [14] WAN P F, YANG J Q, YING T, et al. Effects of ionization and displacement damage in AlGaN/GaN HEMT devices caused by various heavy ions[J]. IEEE Transactions on Nuclear Science, 2021, 68(6): 1265-1271.
[16] [16] WANG Q Q, LIU H X, WANG S L, et al. TCAD simulation of single-event-transient effects in L-shaped channel tunneling field-effect transistors[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2250-2259.
[17] [17] ZHOU X T, TANG Y, JIA Y P, et al. Single-event effects in SiC double-trench MOSFETs[J]. IEEE Transactions on Nuclear Science, 2019, 66(11): 2312-2318.
[18] [18] ZERARKA M, AUSTIN P, BENSOUSSAN A, et al. TCAD simulation of the single event effects in normally-OFF GaN transistors after heavy ion radiation[J]. IEEE Transactions on Nuclear Science, 2017, 64(8): 2242-2249.
Get Citation
Copy Citation Text
SUN Shuxiang, LI Haoyu, ZHANG Xin. Investigation of Single Event Transient Effects in InP-based HEMT[J]. Microelectronics, 2025, 55(1): 21
Special Issue:
Received: May. 8, 2024
Accepted: Jun. 19, 2025
Published Online: Jun. 19, 2025
The Author Email: