Spectroscopy and Spectral Analysis, Volume. 41, Issue 11, 3532(2021)

Hyperspectral Estimation of Tea Leaves Water Content Under the Influence of Dust Retention

Jing JIANG1、1; 2;, Zi-wei ZHAO1、1; 2;, Chang CAI1、1; 2;, Jin-song ZHANG3、3;, and Zhi-qing CHENG1、1; 2; *;
Author Affiliations
  • 11. College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
  • 33. Chinese Academy of Forestry, Beijing 100091, China
  • show less
    Figures & Tables(8)
    Comparison of spectral reflectance between dust and clean tea leaves
    Comparative analysis of the measured and predicted EWT in tea leaves(a): NDVI(1 298, 1 340); (b): RVI(1 298, 1 325); (c): NDWI(860, 1 450); (d): SIWSI
    • Table 1. Informations of samples

      View table
      View in Article

      Table 1. Informations of samples

      样本样本数等效水厚度范围
      /(g·cm-2)
      单位滞尘率范围
      /(g·cm-2)
      特征波段提取集2000.010~0.0230.067~2.523
      建模集1000.012~0.0200.033~1.612
      检验集500.012~0.0290.124~1.9403
      总量3500.010~0.0290.033~2.523
    • Table 2. Vegetation indexes and calculation methods

      View table
      View in Article

      Table 2. Vegetation indexes and calculation methods

      植被指数计算公式文献
      NDVI(1 298, 1 340)(R1 298-R1 340)/(R1 298+R1 340)-
      RVI(1 298, 1 325)R1 298/R1 325-
      NDWI(860, 1 450)(R860-R1 450)/(R860+R1 450)[2]
      NDWI(860, 2 130)(R860-R2 130)/(R860+R2 130)[2]
      NDII(R800-R1 600)/(R800+R1 600)[2]
      MSIR1 600/R820[2]
      SIWSI(R860-R1 640)/(R860+R1 640)[11]
      NDMSI(R820-R1 600)/(R820+R1 600)[11]
    • Table 3. Correlation coefficients of EWT with various indices in dust and clean tea leaves

      View table
      View in Article

      Table 3. Correlation coefficients of EWT with various indices in dust and clean tea leaves

      植被指数相关系数相对变率
      n=100
      无尘(n=100)有尘(n=100)
      NDVI(1 298, 1 340)0.865**0.848**0.019
      RVI(1 298, 1 325)0.864**0.844**0.023
      NDWI(860, 1 450)0.837**0.795**0.051
      NDWI(860, 2 130)0.805**0.752**0.068
      NDII0.808**0.760**0.061
      MSI-0.805**-0.748**0.073
      SIWSI0.801**0.754**0.060
      NDMSI0.806**0.757**0.062
    • Table 4. Estimation and evaluation for EWT model using vegetation indexes of tea leaves under clean and dust conditions

      View table
      View in Article

      Table 4. Estimation and evaluation for EWT model using vegetation indexes of tea leaves under clean and dust conditions

      植被指数无尘回归方程R2有尘回归方程R2R2相对变率
      NDVI(1 298, 1 340)EWT=0.291NDVI(1 298, 1 340)+0.0020.870EWT=0.268NDVI(1 298, 1 340)+0.0040.8120.069
      RVI(1 298, 1 325)EWT=0.253RVI(1 298, 1 325)-0.2490.873EWT=0.233RVI(1 298, 1 325)-0.2280.8140.070
      NDWI(860, 1 450)EWT=0.038NDWI(860, 1 450)-0.0030.799EWT=0.031 NDWI(860, 1 450)+0.00040.7410.075
      SIWSIEWT=0.066SIWSI+0.0030.770EWT=0.049SIWSI+0.0070.7040.089
    • Table 5. Comparative analysis of the measured and predicted values of EWT in tea leaves

      View table
      View in Article

      Table 5. Comparative analysis of the measured and predicted values of EWT in tea leaves

      植被指数无尘有尘R2相对
      变率
      估算值与实测值拟合方程R2RMSE估算值与实测值拟合方程R2RMSE
      NDVI(1 298, 1 340)y=0.225x+0.0050.7190.001y=0.777x+0.0030.7110.0010.011
      RVI(1 298, 1 325)y=0.871x+0.0020.7180.001y=0.733x+0.0040.6940.0010.033
      NDWI(860, 1 450)y=0.899x+0.0020.6670.001y=0.696x+0.0050.6490.0010.027
      SIWSIy=0.679x+0.0060.5650.001y=0.689x+0.0050.5340.0010.055
    • Table 6. Estimated models for EWT of tea leaf by using vegetation indexes under mixed conditions

      View table
      View in Article

      Table 6. Estimated models for EWT of tea leaf by using vegetation indexes under mixed conditions

      植被指数(有尘+无尘)回归方程R2
      NDVI(1 298, 1 340)EWT=0.278NDVI(1 298, 1 340)+0.0060.837
      RVI(1 298, 1 325)EWT=0.245RVI(1 298, 1 325)-0.2410.853
      NDWI(860, 1 450)EWT=0.033NDWI(860, 1 450)-0.0010.752
      SIWSIEWT=0.053SIWSI+0.0060.688
    Tools

    Get Citation

    Copy Citation Text

    Jing JIANG, Zi-wei ZHAO, Chang CAI, Jin-song ZHANG, Zhi-qing CHENG. Hyperspectral Estimation of Tea Leaves Water Content Under the Influence of Dust Retention[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3532

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Orginal Article

    Received: Oct. 26, 2020

    Accepted: --

    Published Online: Dec. 17, 2021

    The Author Email:

    DOI:10.3964/j.issn.1000-0593(2021)11-3532-06

    Topics