Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0415004(2022)
Lightweight Target Detection Algorithm Based on Adaptive Spatial Feature Fusion
[1] Luo H L, Chen H K. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 48, 1230-1239(2020).
[8] Redmon J, Farhadi A. YOLOV3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767
[10] Li B, Wang C, Wu J et al. Surface defect detection of aeroengine components based on improved YOLOv4 algorithm[J]. Laser & Optoelectronics Progress, 58, 1415004(2021).
[17] Liu W J, Gao M Y, Qu H C et al. Light-weight multi-object detection network based on inverted residual structure[J]. Laser & Optoelectronics Progress, 56, 221003(2019).
[18] Ma Q, Zhu B, Zhang H W et al. Low-altitude UAV detection and recognition method based on optimized YOLOv3[J]. Laser & Optoelectronics Progress, 56, 201006(2019).
[19] Guo J X, Liu L B, Xu F et al. Airport scene aircraft detection method based on YOLO v3[J]. Laser & Optoelectronics Progress, 56, 191003(2019).
Get Citation
Copy Citation Text
Yujie Luo, Jian Zhang, Liang Chen, Lü Zhang, Wanqing Ouyang, Daiqin Huang, Yuyi Yang. Lightweight Target Detection Algorithm Based on Adaptive Spatial Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0415004
Category: Machine Vision
Received: Feb. 18, 2021
Accepted: Apr. 6, 2021
Published Online: Feb. 15, 2022
The Author Email: Jian Zhang (jzhang@hnust.edu.cn)