Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0415004(2022)

Lightweight Target Detection Algorithm Based on Adaptive Spatial Feature Fusion

Yujie Luo, Jian Zhang*, Liang Chen, Lü Zhang, Wanqing Ouyang, Daiqin Huang, and Yuyi Yang
Author Affiliations
  • School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan , Hunan 411100, China
  • show less
    Figures & Tables(14)
    Standard convolution and depth separable convolution. (a) Standard convolution; (b) deep convolution; (c) point convolution
    PANet structure
    Top-down integration
    Improved PANet structure
    Network output of YOLOv4
    New network output
    Structure of propoesd network
    Comparison of training effect between proposed algorithm and YOLOv4 under a small amount of data samples
    Comparison of training effect between proposed algorithm and YOLOv4 under a large number of data samples
    Comparison of detection effect between proposed algorithm and YOLOv4.(a)(c)(e)(g) YOLOv4 algorithm;(b)(d)(f)(h) proposed algorithm
    • Table 1. MobileNet structure

      View table

      Table 1. MobileNet structure

      TypeNumber of filtersSizeOutput
      Conv323×3416×416
      Conv dw323×3/2208×208
      Conv641×1208×208
      Conv dw643×3/2104×104
      Conv1281×1104×104
      Conv dw1283×3104×104
      Conv1281×1104×104
      Conv dw1283×3/252×52
      Conv2561×152×52
      Conv dw2563×352×52
      Conv2561×152×52
      Conv dw2563×3/226×26
      Conv5121×126×26
      Conv dw5123×326×26
      Conv5121×126×26
      Conv dw5123×3/213×13
      Conv10241×113×13
      Conv dw10243×313×13
      Conv10241×113×13
    • Table 2. CSPDarkNet-53 structure

      View table

      Table 2. CSPDarkNet-53 structure

      TypeNumber of filtersSizeOutput
      Convolutional323×3416×416
      Convolutional643×3/2208×208
      Convolutional321×1
      Convolutional643×3
      Residual208×208
      Convolutional1283×3/2104×104
      Convolutional641×1
      Convolutional1283×3
      Residual104×104
      Convolutional2563×3/252×52
      Convolutional1281×1
      Convolutional2563×3
      Residual52×52
      Convolutional5123×3/226×26
      Convolutional2561×1
      Convolutional5123×3
      Residual26×26
      Convolutional10243×3/213×13
      Convolutional5121×1
      Convolutional10243×3
      Residual13×13
    • Table 3. Performance comparison of different algorithms

      View table

      Table 3. Performance comparison of different algorithms

      AlgorithmAP /%mAP /%Detection speed /(frame·s-1
      MaskNo_maskNo_mask_well
      Faster-RCNN97.7797.5695.3396.882
      RetinaFace74.5197.3570.4580.776
      Attention-RetinaFace75.7698.6773.8982.778
      SSD77.3375.5573.3474.079
      YOLOv381.6280.9677.6580.0711
      YOLOv3-tiny78.6777.9275.3377.3015
      YOLOv488.9287.3485.8487.3613
      Improved_YOLOv496.3896.9694.4495.9219
    • Table 4. Comparison of ablation experiments

      View table

      Table 4. Comparison of ablation experiments

      GroupingMobileNetASFFModify_lossAP /%mAP /%Detection speed /(frame·s-1
      MaskNo_maskNo_mask_well
      G1×××88.9287.3485.8487.3613
      G2××86.7586.0283.9885.5821
      G3×91.8892.3289.4591.2120
      G496.3896.9694.4495.9219
    Tools

    Get Citation

    Copy Citation Text

    Yujie Luo, Jian Zhang, Liang Chen, Lü Zhang, Wanqing Ouyang, Daiqin Huang, Yuyi Yang. Lightweight Target Detection Algorithm Based on Adaptive Spatial Feature Fusion[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0415004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 18, 2021

    Accepted: Apr. 6, 2021

    Published Online: Feb. 15, 2022

    The Author Email: Jian Zhang (jzhang@hnust.edu.cn)

    DOI:10.3788/LOP202259.0415004

    Topics