Chinese Journal of Lasers, Volume. 51, Issue 4, 0402103(2024)

Research Progress of Ultrasonic Assisted Laser Manufacturing Technology (Invited)

Zhehe Yao1,2,3, Chenghao Pan1,2,3, Yiming Chi1,2,3, Jian Chen1,2,3, Fabo Wang1,2,3, Qunli Zhang1,2,3, and Jianhua Yao1,2,3、*
Author Affiliations
  • 1Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • 2Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • 3College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang , China
  • show less
    References(146)

    [2] Yao Z H, Zhang Q L, Wang L et al. State-of-the-art review on laser hybrid manufacturing technology[J]. Electromachining & Mould, 1-13, 66(2022).

    [3] Yao Z H, Kim G Y, Wang Z H et al. Acoustic softening and residual hardening in aluminum: modeling and experiments[J]. International Journal of Plasticity, 39, 75-87(2012).

    [4] Todaro C J, Easton M A, Qiu D et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 11, 142(2020).

    [5] Yan L T, Zhang Q J[M]. Ultrasonic energy field technology and its application basis(2023).

    [6] Ning F D, Cong W L. Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives[J]. Journal of Manufacturing Processes, 51, 174-190(2020).

    [7] Wang B, Tan D Y, Lee T L et al. Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound[J]. Acta Materialia, 144, 505-515(2018).

    [8] Chen S L, Hsu L L. In-process vibration-assisted high power Nd∶YAG pulsed laser ceramic-metal composite cladding on Al-alloys[J]. Optics & Laser Technology, 30, 263-273(1998).

    [9] Komarov S V, Kuwabara M, Abramov O V. High power ultrasonics in pyrometallurgy: current status and recent development[J]. ISIJ International, 45, 1765-1782(2005).

    [10] Wu W H, Eskin D G, Priyadarshi A et al. New insights into the mechanisms of ultrasonic emulsification in the oil-water system and the role of gas bubbles[J]. Ultrasonics Sonochemistry, 73, 105501(2021).

    [11] Wang G, Croaker P, Dargusch M et al. Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy[J]. Computational Materials Science, 134, 116-125(2017).

    [12] Komarov S, Yamamoto T, Sun J C. Fabrication of Al-Bi frozen emulsion alloys due to high-intense ultrasound irradiation[J]. Journal of Alloys and Compounds, 859, 158231(2021).

    [13] Wang Y C, Shi J. Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in situ ultrasonic impact peening and heat treatment[J]. Materials Science and Engineering: A, 786, 139434(2020).

    [14] Shi C H, Ren N F, Wang H X et al. Effects of ultrasonic assistance on microhole drilling based on Nd∶YAG laser trepanning[J]. Optics & Laser Technology, 106, 451-460(2018).

    [15] Wu D J, Song C C, Di T D et al. Intermetallic regulation mechanism of Inconel 718/Ti6Al4V composite by novel follow-up ultrasonic assisted laser additive manufacturing[J]. Composites Part B: Engineering, 235, 109736(2022).

    [16] Yuan D, Shao S Q, Guo C H et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrasonics Sonochemistry, 73, 105472(2021).

    [17] Wen X, Cui X F, Jin G et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding[J]. Journal of Alloys and Compounds, 835, 155449(2020).

    [18] Chen J, Yao Z H, Yao J H et al. State-of-art review on ultrasonic vibration-assisted laser cladding[J]. Aeronautical Manufacturing Technology, 64, 36-46(2021).

    [19] Hu G F, Yang Y, Sun R et al. Microstructure and properties of laser cladding NiCrBSi coating assisted by electromagnetic-ultrasonic compound field[J]. Surface and Coatings Technology, 404, 126469(2020).

    [20] Wu B, Huang J X, Yang G et al. Effects of ultrasonic shot peening on fatigue behavior of TA15 titanium alloy fabricated by laser melting deposition[J]. Surface and Coatings Technology, 446, 128769(2022).

    [21] Li M Y, Han B, Wang Y et al. Investigation on laser cladding high-hardness nano-ceramic coating assisted by ultrasonic vibration processing[J]. Optik, 127, 4596-4600(2016).

    [22] Wang G, Wang Q, Balasubramani N et al. The role of ultrasonically induced acoustic streaming in developing fine equiaxed grains during the solidification of an Al-2Pct Cu alloy[J]. Metallurgical and Materials Transactions A, 50, 5253-5263(2019).

    [23] Zhuang D D, Du B, Zhang S H et al. Effect and action mechanism of ultrasonic assistance on microstructure and mechanical performance of laser cladding 316L stainless steel coating[J]. Surface and Coatings Technology, 433, 128122(2022).

    [24] Todaro C J, Easton M A, Qiu D et al. Grain refinement of stainless steel in ultrasound-assisted additive manufacturing[J]. Additive Manufacturing, 37, 101632(2021).

    [25] Yao Z H, Wang Z, Chen J et al. Equiaxed microstructure formation by ultrasonic assisted laser metal deposition[J]. Manufacturing Letters, 31, 56-59(2022).

    [26] Zhu L D, Yang Z C, Xin B et al. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718[J]. Surface and Coatings Technology, 410, 126964(2021).

    [27] Jin M, He D Y, Shao W et al. The microstructure and high-temperature oxidation resistance of Si-rich Mo-Si-B coatings prepared by ultrasonic vibration assisted laser cladding[J]. Journal of Alloys and Compounds, 953, 170175(2023).

    [28] Yang Z C, Wang S H, Zhu L D et al. Manipulating molten pool dynamics during metal 3D printing by ultrasound[J]. Applied Physics Reviews, 9, 021416(2022).

    [29] Han X, Li C, Yang Y P et al. Experimental research on the influence of ultrasonic vibrations on the laser cladding process of a disc laser[J]. Surface and Coatings Technology, 406, 126750(2021).

    [30] Mi H B, Chen T, Deng Z X et al. Microstructure and mechanical properties of TiC/TiB composite ceramic coatings in-situ synthesized by ultrasonic vibration-assisted laser cladding[J]. Coatings, 12, 99(2022).

    [31] Yao Z H, Yu X W, Nie Y B et al. Effects of three-dimensional vibration on laser cladding of SS316L alloy[J]. Journal of Laser Applications, 31, 032013(2019).

    [32] Yao Z H, Chen J, Qian H Y et al. Microstructure and tensile property of laser cladding assisted with multidimensional high-frequency vibration[J]. Materials, 15, 4295(2022).

    [33] Zhang M, Zhao G L, Wang X H et al. Microstructure evolution and properties of in situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing[J]. Surface and Coatings Technology, 403, 126445(2020).

    [34] Wang D F, Dang J Q, Li Y G et al. Study on the surface integrity distribution of 300M ultrahigh strength steel subjected to different surface modification treatments[J]. Surface and Coatings Technology, 451, 129033(2022).

    [35] Lesyk D, Soyama H, Dzhemelinskyi V et al. Nanostructured surface modification of AISI 304 stainless steel by laser shock peening followed by ultrasonic impact peening[C](2021).

    [36] Maleki E, Bagherifard S, Unal O et al. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg[J]. Surface and Coatings Technology, 463, 129512(2023).

    [37] Meng X K, Zhao Y M, Zhou J Z et al. Surface properties of 2024 aluminum alloy strengthened by laser ultrasonic composite shock peening[J]. Chinese Journal of Lasers, 49, 1602003(2022).

    [38] Meng X K, Leng X M, Shan C et al. Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic-assisted laser shock peening[J]. International Journal of Fatigue, 168, 107471(2023).

    [39] Wang H X, Li L, Zhu S K et al. Effect of water-based ultrasonic vibration on the quality of laser trepanned microholes in nickel super-alloy workpieces[J]. Journal of Materials Processing Technology, 272, 170-183(2019).

    [40] Wang H X, Xu Y, Xu G X et al. Numerical analysis for stress fields induced by laser trepanning of square-slotted blind holes with and without ultrasonic assistance[J]. Optics & Laser Technology, 125, 106030(2020).

    [41] Wang C S, Li R F, Bi X L et al. Microstructure and wear resistance property of laser cladded CrCoNi coatings assisted by ultrasonic impact treatment[J]. Journal of Materials Research and Technology, 22, 853-864(2023).

    [42] Liu B, Yu Y M, Li R F et al. Effect of ultrasonic impact treatment on surface stress evaluation of laser cladding coating by using critically refracted longitudinal wave[J]. Surface and Coatings Technology, 421, 127484(2021).

    [43] Xu L Y, Gao Y L, Zhao L et al. Ultrasonic micro-forging post-treatment assisted laser directed energy deposition approach to manufacture high-strength Hastelloy X superalloy[J]. Journal of Materials Processing Technology, 299, 117324(2022).

    [44] Zhou C P, Jiang F C, Xu D et al. A calculation model to predict the impact stress field and depth of plastic deformation zone of additive manufactured parts in the process of ultrasonic impact treatment[J]. Journal of Materials Processing Technology, 280, 116599(2020).

    [45] Wang J D, Xue Y, Xu D et al. Effects of layer-by-layer ultrasonic impact treatment on microstructure and mechanical properties of 304 stainless steel manufactured by directed energy deposition[J]. Additive Manufacturing, 68, 103523(2023).

    [46] Thompson S M, Bian L K, Shamsaei N et al. An overview of direct laser deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics[J]. Additive Manufacturing, 8, 36-62(2015).

    [47] Xie J C, Raoelison R N, Kang N et al. Study on the in situ strengthening and toughening mechanism of H13 tool steel/WC-12Co composite using laser-based directed energy deposition[J]. Composites Part B: Engineering, 266, 111011(2023).

    [48] Yang C M, Liu X B, Liu Y F et al. Effect of Cu-doping on tribological properties of laser-cladded FeCoCrNiCux high-entropy alloy coatings[J]. Tribology International, 188, 108868(2023).

    [49] Zhang H, Pan Y J, Zhang Y et al. Microstructure, toughness, and tribological properties of laser cladded Mo2FeB2-based composite coating with in situ synthesized WC and La2O3 addition[J]. Surface and Coatings Technology, 449, 128947(2022).

    [50] Tsibulskiy I A, Klimova O G, Korsmik R S et al. Effect of technological parameters on the mutual penetration of copper and iron in laser cladding of steel with a copper-nickel alloy[J]. Welding International, 32, 76-81(2018).

    [51] Wang X L, Zhang Z X, Zhao Y Q et al. Macroscopic morphology and properties of cobalt-based laser cladding layers on rail steel based on pulse shaping[J]. Optics & Laser Technology, 168, 109940(2024).

    [52] Li C, Yang Y P, Liu Z T et al. Differential analysis of the influence mechanism of ultrasonic vibrations on laser cladding[J]. CIRP Journal of Manufacturing Science and Technology, 38, 16-37(2022).

    [53] Xiao M Y, Jiang F C, Guo C H et al. Investigation on microstructure and mechanical properties of Fe-based amorphous coatings prepared via laser cladding assisted with ultrasonic vibration[J]. Optics & Laser Technology, 162, 109294(2023).

    [54] Bermingham M J, StJohn D H, Krynen J et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 168, 261-274(2019).

    [55] StJohn D H, Qian M, Easton M A et al. The interdependence theory: the relationship between grain formation and nucleant selection[J]. Acta Materialia, 59, 4907-4921(2011).

    [56] Chai Q, Zhang H, Fang C et al. Numerical and experimental investigation into temperature field and profile of Stellite6 formed by ultrasonic vibration-assisted laser cladding[J]. Journal of Manufacturing Processes, 85, 80-89(2023).

    [57] Chowdhury S, Yadaiah N, Prakash C et al. Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. Journal of Materials Research and Technology, 20, 2109-2172(2022).

    [58] Song C H, Fu H X, Yan Z W et al. Internal defects and control methods of laser powder bed fusion forming[J]. Chinese Journal of Lasers, 49, 1402801(2022).

    [59] Yan Z W, Trofimov V, Song C H et al. Microstructure and mechanical properties of GH5188 superalloy additively manufactured via ultrasonic-assisted laser powder bed fusion[J]. Journal of Alloys and Compounds, 939, 168771(2023).

    [60] Yang Z C, Zhu L D, Wang S H et al. Effects of ultrasound on multilayer forming mechanism of Inconel 718 in directed energy deposition[J]. Additive Manufacturing, 48, 102462(2021).

    [61] Abramov O V. Action of high intensity ultrasound on solidifying metal[J]. Ultrasonics, 25, 73-82(1987).

    [62] Wei C, Gu H, Gu Y C et al. Abnormal interfacial bonding mechanisms of multi-material additive-manufactured tungsten-stainless steel sandwich structure[J]. International Journal of Extreme Manufacturing, 4, 025002(2022).

    [63] Wei C, Li L, Zhang X J et al. 3D printing of multiple metallic materials via modified selective laser melting[J]. CIRP Annals, 67, 245-248(2018).

    [64] Al-Jamal O M, Hinduja S, Li L. Characteristics of the bond in Cu-H13 tool steel parts fabricated using SLM[J]. CIRP Annals, 57, 239-242(2008).

    [65] Wei C, Sun Z, Chen Q et al. Additive manufacturing of horizontal and 3D functionally graded 316L/Cu10Sn components via multiple material selective laser melting[J]. Journal of Manufacturing Science and Engineering, 141, 081014(2019).

    [66] Zhang X J, Wei C, Chueh Y H et al. An integrated dual ultrasonic selective powder dispensing platform for three-dimensional printing of multiple material metal/glass objects in selective laser melting[J]. Journal of Manufacturing Science and Engineering, 141, 011003(2019).

    [67] Zhang M X, Liu C M, Shi X Z et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting[J]. Applied Sciences, 6, 304(2016).

    [68] Zhou C P, Wang J D, Guo C H et al. Numerical study of the ultrasonic impact on additive manufactured parts[J]. International Journal of Mechanical Sciences, 197, 106334(2021).

    [69] Kolubaev A V, Sizova O V, Fortuna S V et al. Weld structure of low-carbon structural steel formed by ultrasonic-assisted laser welding[J]. Journal of Constructional Steel Research, 172, 106190(2020).

    [70] Liu H D, Hu F Y, Dai J T et al. New technology of ultrasonic processing across different phases in laser welding for damage repairing of thin-walled structure in military aircraft[J]. Transactions of the China Welding Institution, 37, 77-80, 133-134(2016).

    [71] Liu Z G, Jin X Z, Li J H et al. Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding[J]. Advances in Engineering Software, 172, 103200(2022).

    [72] Liu Z G, Jin X Z, Zhang J Y et al. Microstructure evolution and mechanical properties of SUS301L stainless steel sheet welded joint in ultrasonic vibration assisted laser welding[J]. Optics & Laser Technology, 153, 108193(2022).

    [73] Liu H D, Hu F Y, Cui A Y et al. Effect of UPPLW on grain size of laser welding joints of TC4 titanium alloy[J]. Chinese Journal of Lasers, 43, 0802005(2016).

    [74] Lu C L, Cui A Y, Liu H D. Research on effects of ultrasonic vibration on microstructure of laser welding joints[J]. Applied Laser, 41, 687-690(2021).

    [75] Tarasov S Y, Vorontsov A V, Fortuna S V et al. Ultrasonic-assisted laser welding on AISI 321 stainless steel[J]. Welding in the World, 63, 875-886(2019).

    [76] Kim J S, Watanabe T, Yoshida Y. Ultrasonic vibration aided laser welding of Al alloys: improvement of laser welding-quality[J]. Journal of Laser Applications, 7, 38-46(1995).

    [77] Venkannah S, Mazumder J. Changes in laser weld bead geometry with the application of ultrasonic vibrations[C](2009).

    [78] Tan C W, Xu B X, Liu F Y et al. Effect of ultrasonic vibration on porosity suppression and columnar-to-equiaxed transition in laser-MIG hybrid welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 122, 2463-2474(2022).

    [79] Li Z, Liu J, Bai C M et al. Study on effect of ultrasonic on laser-arc hybrid welding of aluminum alloy[J]. Laser Technology, 43, 301-306(2019).

    [80] Guo H T, Zhang D M, Zhao Y B et al. Study on the formation of welding, microstructure, and properties of 5A06 aluminum alloy by ultrasonic laser-assisted filler welding[J]. Scientia Sinica: Technologica, 50, 1521-1528(2020).

    [81] Lei Z L, Bi J, Li P et al. Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy[J]. Optics & Laser Technology, 105, 15-22(2018).

    [82] Lei Z L, Bi J, Li P et al. Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy[J]. Optics & Laser Technology, 108, 409-417(2018).

    [83] Liu J, Zhu H Y, Li Z et al. Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding[J]. Optics & Laser Technology, 119, 105619(2019).

    [84] Liu J, Bai C M, Cui B et al. Effect of ultrasonic vibration on microstructure and mechanical properties of high nitrogen steel laser-arc hybrid welding joints[J]. Journal of Mechanical Engineering, 54, 118-126(2018).

    [85] Zhou S Y, Ma G Y, Wu D J et al. Ultrasonic vibration assisted laser welding of nickel-based alloy and Austenite stainless steel[J]. Journal of Manufacturing Processes, 31, 759-767(2018).

    [86] Zhou S Y, Wang B X, Wu D J et al. Follow-up ultrasonic vibration assisted laser welding dissimilar metals for nuclear reactor pump can end sealing[J]. Nuclear Materials and Energy, 27, 100975(2021).

    [87] Li H L, Cao H Y, Zhu Q et al. Influence of welding process on microstructure and properties of laser welding of SiCp/6061 Al matrix composite[J]. Frontiers in Materials, 8, 779324(2021).

    [88] Yang C, Zhu Z T, Cheng Q. Acoustic characteristics of standing waves in ultrasound-assisted laser-metal inert gas hybrid welding[J]. International Journal of Modern Physics B, 33, 1940028(2019).

    [89] Song H, Chen J T, Song H Y. Effect of ultrasonic vibration characteristics on mechanical properties of stainless steel laser weld[J]. Journal of Vibroengineering, 25, 15-25(2023).

    [90] Ohrdes H, Nothdurft S, Nowroth C et al. Influence of the ultrasonic vibration amplitude on the melt pool dynamics and the weld shape of laser beam welded EN AW-6082 utilizing a new excitation system for laser beam welding[J]. Production Engineering, 15, 151-160(2021).

    [91] Deng W W, Wang C Y, Lu H F et al. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review[J]. International Journal of Machine Tools and Manufacture, 191, 104061(2023).

    [92] Lv Y, Dong M G, Pan X X et al. Surface mechanical properties and micro-structure evolution of 7075 aluminum alloy sheet for 2-dimension ellipse ultrasonic vibration incremental forming: a pretreatment for laser shock peening[J]. Coatings, 12, 1914(2022).

    [93] Lesyk D A, Martinez S, Mordyuk B N et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel[J]. Wear, 462/463, 203494(2020).

    [94] Lesyk D A, Martinez S, Mordyuk B N et al. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045[J]. Optics & Laser Technology, 111, 424-438(2019).

    [95] Lesyk D, Alnusirat W, Martinez S, Tonkonogyi V, Ivanov V, Trojanowska J et al. Comparison of effects of laser, ultrasonic, and combined laser-ultrasonic hardening treatments on surface properties of AISI 1045 steel parts[M]. Advanced manufacturing processes iii, 313-322(2022).

    [96] Lesyk D A, Martinez S, Mordyuk B N et al. Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment[J]. Surface and Coatings Technology, 328, 344-354(2017).

    [97] Lesyk D A, Martinez S, Mordyuk B N et al. Laser-hardened and ultrasonically peened surface layers on tool steel AISI D2: correlation of the bearing curves’ parameters, hardness and wear[J]. Journal of Materials Engineering and Performance, 27, 764-776(2018).

    [98] Lesyk D A, Mordyuk B N, Martinez S et al. Influence of combined laser heat treatment and ultrasonic impact treatment on microstructure and corrosion behavior of AISI 1045 steel[J]. Surface and Coatings Technology, 401, 126275(2020).

    [99] Lesyk D, Martinez S, Mordyuk B, Ivanov V, Trojanowska J, Machado J et al. Effects of the combined laser-ultrasonic surface hardening induced microstructure and phase state on mechanical properties of AISI D2 tool steel[M]. Design, 188-198(2020).

    [100] Lesyk D, Martinez S, Mordyuk B, Ivanov V, Trojanowska J, Machado J et al. Wear characteristics of carbon and tool steels hardened by combined laser-ultrasonic surface treatment[M]. Design, 62-72(2021).

    [101] Lesyk D, Martinez S, Mordyuk B, Ivanov V, Trojanowska J, Machado J et al. Combined laser-ultrasonic surface hardening process for improving the properties of metallic products[M]. Design, 97-107(2019).

    [102] Dzhemelinskyi V, Lesyk D, Goncharuk O et al. Surface hardening and finishing of metallic products by hybrid laser-ultrasonic treatment[J]. Eastern-European Journal of Enterprise Technologies, 1, 35-42(2018).

    [103] Gureev D M, Tchipanova D O. Change of structural-and-phase composition under laser-ultrasonic hardening of tool steel[J]. Proceedings of the SPIE, 3688, 243-248(1999).

    [104] Gureev D M. Laser-ultrasonic hardening of steel surface[J]. Journal of Advanced Materials, 5, 63-68(2001).

    [105] Qiao Y Q, Tang A G, Chen T T et al. Femtosecond laser five-axis scanning drilling of deep blind holes[J]. Chinese Journal of Lasers, 50, 2402401(2023).

    [106] Mei X S, Yang Z X, Zhao W Q. Laser hole drilling on surface of electronic ceramic substrates[J]. Chinese Journal of Lasers, 47, 0500011(2020).

    [107] Cheng J, Kong W C, Yang Z et al. Research progress of liquid-assisted laser micro-hole processing[J]. Surface Technology, 52, 183-195(2023).

    [108] Alavi S H, Harimkar S P. Ultrasonic vibration-assisted continuous wave laser surface drilling of materials[J]. Manufacturing Letters, 4, 1-5(2015).

    [109] Alavi S H, Harimkar S P. Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel[J]. Ultrasonics, 94, 305-313(2019).

    [110] Raftar O R, Amiri S, Khajehzadeh M et al. The influence of ultrasonic vibration amplitude and magnetic field intensity on microstructural characteristics in laser drilling of Ti6Al4V[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 2363-2379(2022).

    [111] Alavi S H, Harimkar S P. Evolution of geometric and quality features during ultrasonic vibration-assisted continuous wave laser surface drilling[J]. Journal of Materials Processing Technology, 232, 52-62(2016).

    [112] Amiri S, Khajehzadeh M, Razfar M R. Magnetic field and ultrasonic aided laser drilling effect on Ti6Al4V microstructural characteristics[J]. Materials and Manufacturing Processes, 35, 1832-1841(2020).

    [113] Zhang M Y, Wang Y, Yin J et al. Simulation of ultrasonic vibration-assisted laser ablation of aluminum surface morphology[J]. Journal of Optoelectronics·Laser, 34, 321-327(2023).

    [114] Wang Y, Yin J, Dong Y H et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 33, 16-21(2021).

    [115] Wang Y, Zhang M Y, Dong Y H et al. Mechanism modelling and validation of ultrasonic vibration-assisted laser processing on metal surfaces[J]. Ultrasonics, 128, 106886(2023).

    [116] Alavi S H, Cowell C, Harimkar S P. Experimental and finite element analysis of ultrasonic vibration-assisted continuous-wave laser surface drilling[J]. Materials and Manufacturing Processes, 32, 216-225(2017).

    [117] Xia K B, Wang H X, Ren N F et al. Laser drilling in nickel super-alloy sheets with and without ultrasonic assistance characterized by transient in-process detection with indirect characterization after hole-drilling[J]. Optics & Laser Technology, 134, 106559(2021).

    [118] Chen X, Xu R Q, Chen J P et al. Shock-wave propagation and cavitation bubble oscillation by Nd: YAG laser ablation of a metal in water[J]. Applied Optics, 43, 3251-3257(2004).

    [119] Tomko J, O’Malley S M, Trout C et al. Cavitation bubble dynamics and nanoparticle size distributions in laser ablation in liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 368-372(2017).

    [120] Sun X Y, Zhou J H, Duan J A et al. Experimental research on ultrasound-assisted underwater femtosecond laser drilling[J]. Laser and Particle Beams, 36, 487-493(2018).

    [121] Liu Z, Gao Y B, Wu B X et al. Ultrasound-assisted water-confined laser micromachining: a novel machining process[J]. Manufacturing Letters, 2, 87-90(2014).

    [122] Xia K B. Process and mechanism of laser-based hole generation in superalloy using water-based ultrasonic or magnetic assistance[D](2021).

    [123] Wang H X, Zhu S K, Asundi A et al. Experimental characterization of laser trepanning performance enhanced by water-based ultrasonic assistance[J]. Optics & Laser Technology, 109, 547-560(2019).

    [124] Wang H X, Zhu S K, Xu G X et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 104, 133-139(2018).

    [125] Charee W, Tangwarodomnukun V, Dumkum C. Ultrasonic-assisted underwater laser micromachining of silicon[J]. Journal of Materials Processing Technology, 231, 209-220(2016).

    [126] Simakin A V, Voronov V V, Kirichenko N A et al. Nanoparticles produced by laser ablation of solids in liquid environment[J]. Applied Physics A, 79, 1127-1132(2004).

    [127] Amendola V, Scaramuzza S, Carraro F et al. Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment[J]. Journal of Colloid and Interface Science, 489, 18-27(2017).

    [128] Singh A, Vihinen J, Frankberg E et al. Pulsed laser ablation-induced green synthesis of TiO2 nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis[J]. Nanoscale Research Letters, 11, 447(2016).

    [129] Hu X, Takada N, Machmudah S et al. Ultrasonic-enhanced fabrication of metal nanoparticles by laser ablation in liquid[J]. Industrial & Engineering Chemistry Research, 59, 7512-7519(2020).

    [130] Chen Y Y, Bao L R, Wang H et al. Research progress in preparation of nanoparticles by laser ablation in liquid[J]. Chinese Journal of Lasers, 48, 0600002(2021).

    [131] Takada N, Fujikawa A, Koshizaki N et al. Effect of ultrasonic wave on the syntheses of Au and ZnO nanoparticles by laser ablation in water[J]. Applied Physics A, 110, 835-839(2013).

    [132] Takada N, Fujikawa A, Sasaki K. Control of plasma and cavitation bubble in liquid-phase laser ablation using supersonic waves[J]. Japanese Journal of Applied Physics, 50, 126201(2011).

    [133] Dadras S, Jafarkhani P, Torkamany M J et al. Effects of ultrasound radiation on the synthesis of laser ablated gold nanoparticles[J]. Journal of Physics D: Applied Physics, 42, 025405(2009).

    [134] Escobar-Alarcón L, Granados E V, Solís-Casados D A et al. Preparation of bismuth-based nanosheets by ultrasound-assisted liquid laser ablation[J]. Applied Physics A, 122, 433(2016).

    [135] Escobar-Alarcón L, Espinosa-Pesqueira M E, Solis-Casados D A et al. Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field[J]. Applied Physics A, 124, 141(2018).

    [136] Kang D, Zou P, Wu H et al. Theoretical and experimental study of ultrasonic vibration-assisted laser polishing 304 stainless steel[J]. IEEE Access, 8, 206146-206163(2020).

    [137] Kang D, Zou P, Wu H et al. Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel[J]. Journal of Manufacturing Processes, 62, 403-417(2021).

    [138] Zheng Q Z, Mei X S, Jiang G D et al. Investigation on ultrasonic vibration-assisted femtosecond laser polishing of C/SiC composites[J]. Journal of the European Ceramic Society, 43, 4656-4672(2023).

    [139] Zhao Z Y, Wang C, Zhang Y J et al. A laser polishing device[P].

    [140] Wang H P, Guan Y C, Zheng H Y. Smooth polishing of femtosecond laser induced craters on cemented carbide by ultrasonic vibration method[J]. Applied Surface Science, 426, 399-405(2017).

    [141] Lei Z L, Tian Z, Chen Y B. Laser cleaning technology in industrial fields[J]. Laser & Optoelectronics Progress, 55, 030005(2018).

    [142] Liu S G. Technical research of pulsed laser cleaning aluminum alloy surface paint coating[D](2022).

    [143] Wang J X, Yuan X D, Ye Y Y et al. Ultrasonic assisted laser surface cleaning system and its cleaning method[P].

    [144] Wang J X, Guo N H, Ye Y Y et al. Device and cleaning method for liquid flow ultrasonic composite assisted laser cleaning of optical components[P].

    [145] Feng A X, Xue W, Lü Y W et al. Laser microfabrication device[P].

    [146] Chiu C C, Chang C H, Lee Y C. Ultrasound assisted laser machining and surface cleaning[C], 872-875(2010).

    [147] Alavi S H, Harimkar S P. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel[J]. Ultrasonics, 59, 21-30(2015).

    Tools

    Get Citation

    Copy Citation Text

    Zhehe Yao, Chenghao Pan, Yiming Chi, Jian Chen, Fabo Wang, Qunli Zhang, Jianhua Yao. Research Progress of Ultrasonic Assisted Laser Manufacturing Technology (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Dec. 16, 2023

    Accepted: Jan. 29, 2024

    Published Online: Feb. 28, 2024

    The Author Email: Yao Jianhua (laser@zjut.edu.cn)

    DOI:10.3788/CJL231534

    CSTR:32183.14.CJL231534

    Topics