Chinese Journal of Lasers, Volume. 51, Issue 4, 0402103(2024)
Research Progress of Ultrasonic Assisted Laser Manufacturing Technology (Invited)
[2] Yao Z H, Zhang Q L, Wang L et al. State-of-the-art review on laser hybrid manufacturing technology[J]. Electromachining & Mould, 1-13, 66(2022).
[3] Yao Z H, Kim G Y, Wang Z H et al. Acoustic softening and residual hardening in aluminum: modeling and experiments[J]. International Journal of Plasticity, 39, 75-87(2012).
[4] Todaro C J, Easton M A, Qiu D et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications, 11, 142(2020).
[5] Yan L T, Zhang Q J[M]. Ultrasonic energy field technology and its application basis(2023).
[6] Ning F D, Cong W L. Ultrasonic vibration-assisted (UV-A) manufacturing processes: state of the art and future perspectives[J]. Journal of Manufacturing Processes, 51, 174-190(2020).
[7] Wang B, Tan D Y, Lee T L et al. Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound[J]. Acta Materialia, 144, 505-515(2018).
[8] Chen S L, Hsu L L. In-process vibration-assisted high power Nd∶YAG pulsed laser ceramic-metal composite cladding on Al-alloys[J]. Optics & Laser Technology, 30, 263-273(1998).
[9] Komarov S V, Kuwabara M, Abramov O V. High power ultrasonics in pyrometallurgy: current status and recent development[J]. ISIJ International, 45, 1765-1782(2005).
[10] Wu W H, Eskin D G, Priyadarshi A et al. New insights into the mechanisms of ultrasonic emulsification in the oil-water system and the role of gas bubbles[J]. Ultrasonics Sonochemistry, 73, 105501(2021).
[11] Wang G, Croaker P, Dargusch M et al. Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy[J]. Computational Materials Science, 134, 116-125(2017).
[12] Komarov S, Yamamoto T, Sun J C. Fabrication of Al-Bi frozen emulsion alloys due to high-intense ultrasound irradiation[J]. Journal of Alloys and Compounds, 859, 158231(2021).
[13] Wang Y C, Shi J. Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in situ ultrasonic impact peening and heat treatment[J]. Materials Science and Engineering: A, 786, 139434(2020).
[14] Shi C H, Ren N F, Wang H X et al. Effects of ultrasonic assistance on microhole drilling based on Nd∶YAG laser trepanning[J]. Optics & Laser Technology, 106, 451-460(2018).
[15] Wu D J, Song C C, Di T D et al. Intermetallic regulation mechanism of Inconel 718/Ti6Al4V composite by novel follow-up ultrasonic assisted laser additive manufacturing[J]. Composites Part B: Engineering, 235, 109736(2022).
[16] Yuan D, Shao S Q, Guo C H et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrasonics Sonochemistry, 73, 105472(2021).
[17] Wen X, Cui X F, Jin G et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding[J]. Journal of Alloys and Compounds, 835, 155449(2020).
[18] Chen J, Yao Z H, Yao J H et al. State-of-art review on ultrasonic vibration-assisted laser cladding[J]. Aeronautical Manufacturing Technology, 64, 36-46(2021).
[19] Hu G F, Yang Y, Sun R et al. Microstructure and properties of laser cladding NiCrBSi coating assisted by electromagnetic-ultrasonic compound field[J]. Surface and Coatings Technology, 404, 126469(2020).
[20] Wu B, Huang J X, Yang G et al. Effects of ultrasonic shot peening on fatigue behavior of TA15 titanium alloy fabricated by laser melting deposition[J]. Surface and Coatings Technology, 446, 128769(2022).
[21] Li M Y, Han B, Wang Y et al. Investigation on laser cladding high-hardness nano-ceramic coating assisted by ultrasonic vibration processing[J]. Optik, 127, 4596-4600(2016).
[22] Wang G, Wang Q, Balasubramani N et al. The role of ultrasonically induced acoustic streaming in developing fine equiaxed grains during the solidification of an Al-2Pct Cu alloy[J]. Metallurgical and Materials Transactions A, 50, 5253-5263(2019).
[23] Zhuang D D, Du B, Zhang S H et al. Effect and action mechanism of ultrasonic assistance on microstructure and mechanical performance of laser cladding 316L stainless steel coating[J]. Surface and Coatings Technology, 433, 128122(2022).
[24] Todaro C J, Easton M A, Qiu D et al. Grain refinement of stainless steel in ultrasound-assisted additive manufacturing[J]. Additive Manufacturing, 37, 101632(2021).
[25] Yao Z H, Wang Z, Chen J et al. Equiaxed microstructure formation by ultrasonic assisted laser metal deposition[J]. Manufacturing Letters, 31, 56-59(2022).
[26] Zhu L D, Yang Z C, Xin B et al. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718[J]. Surface and Coatings Technology, 410, 126964(2021).
[27] Jin M, He D Y, Shao W et al. The microstructure and high-temperature oxidation resistance of Si-rich Mo-Si-B coatings prepared by ultrasonic vibration assisted laser cladding[J]. Journal of Alloys and Compounds, 953, 170175(2023).
[28] Yang Z C, Wang S H, Zhu L D et al. Manipulating molten pool dynamics during metal 3D printing by ultrasound[J]. Applied Physics Reviews, 9, 021416(2022).
[29] Han X, Li C, Yang Y P et al. Experimental research on the influence of ultrasonic vibrations on the laser cladding process of a disc laser[J]. Surface and Coatings Technology, 406, 126750(2021).
[30] Mi H B, Chen T, Deng Z X et al. Microstructure and mechanical properties of TiC/TiB composite ceramic coatings in-situ synthesized by ultrasonic vibration-assisted laser cladding[J]. Coatings, 12, 99(2022).
[31] Yao Z H, Yu X W, Nie Y B et al. Effects of three-dimensional vibration on laser cladding of SS316L alloy[J]. Journal of Laser Applications, 31, 032013(2019).
[32] Yao Z H, Chen J, Qian H Y et al. Microstructure and tensile property of laser cladding assisted with multidimensional high-frequency vibration[J]. Materials, 15, 4295(2022).
[33] Zhang M, Zhao G L, Wang X H et al. Microstructure evolution and properties of in situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing[J]. Surface and Coatings Technology, 403, 126445(2020).
[34] Wang D F, Dang J Q, Li Y G et al. Study on the surface integrity distribution of 300M ultrahigh strength steel subjected to different surface modification treatments[J]. Surface and Coatings Technology, 451, 129033(2022).
[35] Lesyk D, Soyama H, Dzhemelinskyi V et al. Nanostructured surface modification of AISI 304 stainless steel by laser shock peening followed by ultrasonic impact peening[C](2021).
[36] Maleki E, Bagherifard S, Unal O et al. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg[J]. Surface and Coatings Technology, 463, 129512(2023).
[37] Meng X K, Zhao Y M, Zhou J Z et al. Surface properties of 2024 aluminum alloy strengthened by laser ultrasonic composite shock peening[J]. Chinese Journal of Lasers, 49, 1602003(2022).
[38] Meng X K, Leng X M, Shan C et al. Vibration fatigue performance improvement in 2024-T351 aluminum alloy by ultrasonic-assisted laser shock peening[J]. International Journal of Fatigue, 168, 107471(2023).
[39] Wang H X, Li L, Zhu S K et al. Effect of water-based ultrasonic vibration on the quality of laser trepanned microholes in nickel super-alloy workpieces[J]. Journal of Materials Processing Technology, 272, 170-183(2019).
[40] Wang H X, Xu Y, Xu G X et al. Numerical analysis for stress fields induced by laser trepanning of square-slotted blind holes with and without ultrasonic assistance[J]. Optics & Laser Technology, 125, 106030(2020).
[41] Wang C S, Li R F, Bi X L et al. Microstructure and wear resistance property of laser cladded CrCoNi coatings assisted by ultrasonic impact treatment[J]. Journal of Materials Research and Technology, 22, 853-864(2023).
[42] Liu B, Yu Y M, Li R F et al. Effect of ultrasonic impact treatment on surface stress evaluation of laser cladding coating by using critically refracted longitudinal wave[J]. Surface and Coatings Technology, 421, 127484(2021).
[43] Xu L Y, Gao Y L, Zhao L et al. Ultrasonic micro-forging post-treatment assisted laser directed energy deposition approach to manufacture high-strength Hastelloy X superalloy[J]. Journal of Materials Processing Technology, 299, 117324(2022).
[44] Zhou C P, Jiang F C, Xu D et al. A calculation model to predict the impact stress field and depth of plastic deformation zone of additive manufactured parts in the process of ultrasonic impact treatment[J]. Journal of Materials Processing Technology, 280, 116599(2020).
[45] Wang J D, Xue Y, Xu D et al. Effects of layer-by-layer ultrasonic impact treatment on microstructure and mechanical properties of 304 stainless steel manufactured by directed energy deposition[J]. Additive Manufacturing, 68, 103523(2023).
[46] Thompson S M, Bian L K, Shamsaei N et al. An overview of direct laser deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics[J]. Additive Manufacturing, 8, 36-62(2015).
[47] Xie J C, Raoelison R N, Kang N et al. Study on the in situ strengthening and toughening mechanism of H13 tool steel/WC-12Co composite using laser-based directed energy deposition[J]. Composites Part B: Engineering, 266, 111011(2023).
[48] Yang C M, Liu X B, Liu Y F et al. Effect of Cu-doping on tribological properties of laser-cladded FeCoCrNiCux high-entropy alloy coatings[J]. Tribology International, 188, 108868(2023).
[49] Zhang H, Pan Y J, Zhang Y et al. Microstructure, toughness, and tribological properties of laser cladded Mo2FeB2-based composite coating with in situ synthesized WC and La2O3 addition[J]. Surface and Coatings Technology, 449, 128947(2022).
[50] Tsibulskiy I A, Klimova O G, Korsmik R S et al. Effect of technological parameters on the mutual penetration of copper and iron in laser cladding of steel with a copper-nickel alloy[J]. Welding International, 32, 76-81(2018).
[51] Wang X L, Zhang Z X, Zhao Y Q et al. Macroscopic morphology and properties of cobalt-based laser cladding layers on rail steel based on pulse shaping[J]. Optics & Laser Technology, 168, 109940(2024).
[52] Li C, Yang Y P, Liu Z T et al. Differential analysis of the influence mechanism of ultrasonic vibrations on laser cladding[J]. CIRP Journal of Manufacturing Science and Technology, 38, 16-37(2022).
[53] Xiao M Y, Jiang F C, Guo C H et al. Investigation on microstructure and mechanical properties of Fe-based amorphous coatings prepared via laser cladding assisted with ultrasonic vibration[J]. Optics & Laser Technology, 162, 109294(2023).
[54] Bermingham M J, StJohn D H, Krynen J et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 168, 261-274(2019).
[55] StJohn D H, Qian M, Easton M A et al. The interdependence theory: the relationship between grain formation and nucleant selection[J]. Acta Materialia, 59, 4907-4921(2011).
[56] Chai Q, Zhang H, Fang C et al. Numerical and experimental investigation into temperature field and profile of Stellite6 formed by ultrasonic vibration-assisted laser cladding[J]. Journal of Manufacturing Processes, 85, 80-89(2023).
[57] Chowdhury S, Yadaiah N, Prakash C et al. Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. Journal of Materials Research and Technology, 20, 2109-2172(2022).
[58] Song C H, Fu H X, Yan Z W et al. Internal defects and control methods of laser powder bed fusion forming[J]. Chinese Journal of Lasers, 49, 1402801(2022).
[59] Yan Z W, Trofimov V, Song C H et al. Microstructure and mechanical properties of GH5188 superalloy additively manufactured via ultrasonic-assisted laser powder bed fusion[J]. Journal of Alloys and Compounds, 939, 168771(2023).
[60] Yang Z C, Zhu L D, Wang S H et al. Effects of ultrasound on multilayer forming mechanism of Inconel 718 in directed energy deposition[J]. Additive Manufacturing, 48, 102462(2021).
[61] Abramov O V. Action of high intensity ultrasound on solidifying metal[J]. Ultrasonics, 25, 73-82(1987).
[62] Wei C, Gu H, Gu Y C et al. Abnormal interfacial bonding mechanisms of multi-material additive-manufactured tungsten-stainless steel sandwich structure[J]. International Journal of Extreme Manufacturing, 4, 025002(2022).
[63] Wei C, Li L, Zhang X J et al. 3D printing of multiple metallic materials via modified selective laser melting[J]. CIRP Annals, 67, 245-248(2018).
[64] Al-Jamal O M, Hinduja S, Li L. Characteristics of the bond in Cu-H13 tool steel parts fabricated using SLM[J]. CIRP Annals, 57, 239-242(2008).
[65] Wei C, Sun Z, Chen Q et al. Additive manufacturing of horizontal and 3D functionally graded 316L/Cu10Sn components via multiple material selective laser melting[J]. Journal of Manufacturing Science and Engineering, 141, 081014(2019).
[66] Zhang X J, Wei C, Chueh Y H et al. An integrated dual ultrasonic selective powder dispensing platform for three-dimensional printing of multiple material metal/glass objects in selective laser melting[J]. Journal of Manufacturing Science and Engineering, 141, 011003(2019).
[67] Zhang M X, Liu C M, Shi X Z et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting[J]. Applied Sciences, 6, 304(2016).
[68] Zhou C P, Wang J D, Guo C H et al. Numerical study of the ultrasonic impact on additive manufactured parts[J]. International Journal of Mechanical Sciences, 197, 106334(2021).
[69] Kolubaev A V, Sizova O V, Fortuna S V et al. Weld structure of low-carbon structural steel formed by ultrasonic-assisted laser welding[J]. Journal of Constructional Steel Research, 172, 106190(2020).
[70] Liu H D, Hu F Y, Dai J T et al. New technology of ultrasonic processing across different phases in laser welding for damage repairing of thin-walled structure in military aircraft[J]. Transactions of the China Welding Institution, 37, 77-80, 133-134(2016).
[71] Liu Z G, Jin X Z, Li J H et al. Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding[J]. Advances in Engineering Software, 172, 103200(2022).
[72] Liu Z G, Jin X Z, Zhang J Y et al. Microstructure evolution and mechanical properties of SUS301L stainless steel sheet welded joint in ultrasonic vibration assisted laser welding[J]. Optics & Laser Technology, 153, 108193(2022).
[73] Liu H D, Hu F Y, Cui A Y et al. Effect of UPPLW on grain size of laser welding joints of TC4 titanium alloy[J]. Chinese Journal of Lasers, 43, 0802005(2016).
[74] Lu C L, Cui A Y, Liu H D. Research on effects of ultrasonic vibration on microstructure of laser welding joints[J]. Applied Laser, 41, 687-690(2021).
[75] Tarasov S Y, Vorontsov A V, Fortuna S V et al. Ultrasonic-assisted laser welding on AISI 321 stainless steel[J]. Welding in the World, 63, 875-886(2019).
[76] Kim J S, Watanabe T, Yoshida Y. Ultrasonic vibration aided laser welding of Al alloys: improvement of laser welding-quality[J]. Journal of Laser Applications, 7, 38-46(1995).
[77] Venkannah S, Mazumder J. Changes in laser weld bead geometry with the application of ultrasonic vibrations[C](2009).
[78] Tan C W, Xu B X, Liu F Y et al. Effect of ultrasonic vibration on porosity suppression and columnar-to-equiaxed transition in laser-MIG hybrid welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 122, 2463-2474(2022).
[79] Li Z, Liu J, Bai C M et al. Study on effect of ultrasonic on laser-arc hybrid welding of aluminum alloy[J]. Laser Technology, 43, 301-306(2019).
[80] Guo H T, Zhang D M, Zhao Y B et al. Study on the formation of welding, microstructure, and properties of 5A06 aluminum alloy by ultrasonic laser-assisted filler welding[J]. Scientia Sinica: Technologica, 50, 1521-1528(2020).
[81] Lei Z L, Bi J, Li P et al. Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy[J]. Optics & Laser Technology, 105, 15-22(2018).
[82] Lei Z L, Bi J, Li P et al. Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy[J]. Optics & Laser Technology, 108, 409-417(2018).
[83] Liu J, Zhu H Y, Li Z et al. Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding[J]. Optics & Laser Technology, 119, 105619(2019).
[84] Liu J, Bai C M, Cui B et al. Effect of ultrasonic vibration on microstructure and mechanical properties of high nitrogen steel laser-arc hybrid welding joints[J]. Journal of Mechanical Engineering, 54, 118-126(2018).
[85] Zhou S Y, Ma G Y, Wu D J et al. Ultrasonic vibration assisted laser welding of nickel-based alloy and Austenite stainless steel[J]. Journal of Manufacturing Processes, 31, 759-767(2018).
[86] Zhou S Y, Wang B X, Wu D J et al. Follow-up ultrasonic vibration assisted laser welding dissimilar metals for nuclear reactor pump can end sealing[J]. Nuclear Materials and Energy, 27, 100975(2021).
[87] Li H L, Cao H Y, Zhu Q et al. Influence of welding process on microstructure and properties of laser welding of SiCp/6061 Al matrix composite[J]. Frontiers in Materials, 8, 779324(2021).
[88] Yang C, Zhu Z T, Cheng Q. Acoustic characteristics of standing waves in ultrasound-assisted laser-metal inert gas hybrid welding[J]. International Journal of Modern Physics B, 33, 1940028(2019).
[89] Song H, Chen J T, Song H Y. Effect of ultrasonic vibration characteristics on mechanical properties of stainless steel laser weld[J]. Journal of Vibroengineering, 25, 15-25(2023).
[90] Ohrdes H, Nothdurft S, Nowroth C et al. Influence of the ultrasonic vibration amplitude on the melt pool dynamics and the weld shape of laser beam welded EN AW-6082 utilizing a new excitation system for laser beam welding[J]. Production Engineering, 15, 151-160(2021).
[91] Deng W W, Wang C Y, Lu H F et al. Progressive developments, challenges and future trends in laser shock peening of metallic materials and alloys: a comprehensive review[J]. International Journal of Machine Tools and Manufacture, 191, 104061(2023).
[92] Lv Y, Dong M G, Pan X X et al. Surface mechanical properties and micro-structure evolution of 7075 aluminum alloy sheet for 2-dimension ellipse ultrasonic vibration incremental forming: a pretreatment for laser shock peening[J]. Coatings, 12, 1914(2022).
[93] Lesyk D A, Martinez S, Mordyuk B N et al. Combining laser transformation hardening and ultrasonic impact strain hardening for enhanced wear resistance of AISI 1045 steel[J]. Wear, 462/463, 203494(2020).
[94] Lesyk D A, Martinez S, Mordyuk B N et al. Effects of laser heat treatment combined with ultrasonic impact treatment on the surface topography and hardness of carbon steel AISI 1045[J]. Optics & Laser Technology, 111, 424-438(2019).
[95] Lesyk D, Alnusirat W, Martinez S, Tonkonogyi V, Ivanov V, Trojanowska J et al. Comparison of effects of laser, ultrasonic, and combined laser-ultrasonic hardening treatments on surface properties of AISI 1045 steel parts[M]. Advanced manufacturing processes iii, 313-322(2022).
[96] Lesyk D A, Martinez S, Mordyuk B N et al. Microstructure related enhancement in wear resistance of tool steel AISI D2 by applying laser heat treatment followed by ultrasonic impact treatment[J]. Surface and Coatings Technology, 328, 344-354(2017).
[97] Lesyk D A, Martinez S, Mordyuk B N et al. Laser-hardened and ultrasonically peened surface layers on tool steel AISI D2: correlation of the bearing curves’ parameters, hardness and wear[J]. Journal of Materials Engineering and Performance, 27, 764-776(2018).
[98] Lesyk D A, Mordyuk B N, Martinez S et al. Influence of combined laser heat treatment and ultrasonic impact treatment on microstructure and corrosion behavior of AISI 1045 steel[J]. Surface and Coatings Technology, 401, 126275(2020).
[99] Lesyk D, Martinez S, Mordyuk B, Ivanov V, Trojanowska J, Machado J et al. Effects of the combined laser-ultrasonic surface hardening induced microstructure and phase state on mechanical properties of AISI D2 tool steel[M]. Design, 188-198(2020).
[100] Lesyk D, Martinez S, Mordyuk B, Ivanov V, Trojanowska J, Machado J et al. Wear characteristics of carbon and tool steels hardened by combined laser-ultrasonic surface treatment[M]. Design, 62-72(2021).
[101] Lesyk D, Martinez S, Mordyuk B, Ivanov V, Trojanowska J, Machado J et al. Combined laser-ultrasonic surface hardening process for improving the properties of metallic products[M]. Design, 97-107(2019).
[102] Dzhemelinskyi V, Lesyk D, Goncharuk O et al. Surface hardening and finishing of metallic products by hybrid laser-ultrasonic treatment[J]. Eastern-European Journal of Enterprise Technologies, 1, 35-42(2018).
[103] Gureev D M, Tchipanova D O. Change of structural-and-phase composition under laser-ultrasonic hardening of tool steel[J]. Proceedings of the SPIE, 3688, 243-248(1999).
[104] Gureev D M. Laser-ultrasonic hardening of steel surface[J]. Journal of Advanced Materials, 5, 63-68(2001).
[105] Qiao Y Q, Tang A G, Chen T T et al. Femtosecond laser five-axis scanning drilling of deep blind holes[J]. Chinese Journal of Lasers, 50, 2402401(2023).
[106] Mei X S, Yang Z X, Zhao W Q. Laser hole drilling on surface of electronic ceramic substrates[J]. Chinese Journal of Lasers, 47, 0500011(2020).
[107] Cheng J, Kong W C, Yang Z et al. Research progress of liquid-assisted laser micro-hole processing[J]. Surface Technology, 52, 183-195(2023).
[108] Alavi S H, Harimkar S P. Ultrasonic vibration-assisted continuous wave laser surface drilling of materials[J]. Manufacturing Letters, 4, 1-5(2015).
[109] Alavi S H, Harimkar S P. Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel[J]. Ultrasonics, 94, 305-313(2019).
[110] Raftar O R, Amiri S, Khajehzadeh M et al. The influence of ultrasonic vibration amplitude and magnetic field intensity on microstructural characteristics in laser drilling of Ti6Al4V[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 2363-2379(2022).
[111] Alavi S H, Harimkar S P. Evolution of geometric and quality features during ultrasonic vibration-assisted continuous wave laser surface drilling[J]. Journal of Materials Processing Technology, 232, 52-62(2016).
[112] Amiri S, Khajehzadeh M, Razfar M R. Magnetic field and ultrasonic aided laser drilling effect on Ti6Al4V microstructural characteristics[J]. Materials and Manufacturing Processes, 35, 1832-1841(2020).
[113] Zhang M Y, Wang Y, Yin J et al. Simulation of ultrasonic vibration-assisted laser ablation of aluminum surface morphology[J]. Journal of Optoelectronics·Laser, 34, 321-327(2023).
[114] Wang Y, Yin J, Dong Y H et al. Simulation analysis of ultrasonic vibration for laser ablation of aluminum surface temperature field[J]. High Power Laser and Particle Beams, 33, 16-21(2021).
[115] Wang Y, Zhang M Y, Dong Y H et al. Mechanism modelling and validation of ultrasonic vibration-assisted laser processing on metal surfaces[J]. Ultrasonics, 128, 106886(2023).
[116] Alavi S H, Cowell C, Harimkar S P. Experimental and finite element analysis of ultrasonic vibration-assisted continuous-wave laser surface drilling[J]. Materials and Manufacturing Processes, 32, 216-225(2017).
[117] Xia K B, Wang H X, Ren N F et al. Laser drilling in nickel super-alloy sheets with and without ultrasonic assistance characterized by transient in-process detection with indirect characterization after hole-drilling[J]. Optics & Laser Technology, 134, 106559(2021).
[118] Chen X, Xu R Q, Chen J P et al. Shock-wave propagation and cavitation bubble oscillation by Nd: YAG laser ablation of a metal in water[J]. Applied Optics, 43, 3251-3257(2004).
[119] Tomko J, O’Malley S M, Trout C et al. Cavitation bubble dynamics and nanoparticle size distributions in laser ablation in liquids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 368-372(2017).
[120] Sun X Y, Zhou J H, Duan J A et al. Experimental research on ultrasound-assisted underwater femtosecond laser drilling[J]. Laser and Particle Beams, 36, 487-493(2018).
[121] Liu Z, Gao Y B, Wu B X et al. Ultrasound-assisted water-confined laser micromachining: a novel machining process[J]. Manufacturing Letters, 2, 87-90(2014).
[122] Xia K B. Process and mechanism of laser-based hole generation in superalloy using water-based ultrasonic or magnetic assistance[D](2021).
[123] Wang H X, Zhu S K, Asundi A et al. Experimental characterization of laser trepanning performance enhanced by water-based ultrasonic assistance[J]. Optics & Laser Technology, 109, 547-560(2019).
[124] Wang H X, Zhu S K, Xu G X et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 104, 133-139(2018).
[125] Charee W, Tangwarodomnukun V, Dumkum C. Ultrasonic-assisted underwater laser micromachining of silicon[J]. Journal of Materials Processing Technology, 231, 209-220(2016).
[126] Simakin A V, Voronov V V, Kirichenko N A et al. Nanoparticles produced by laser ablation of solids in liquid environment[J]. Applied Physics A, 79, 1127-1132(2004).
[127] Amendola V, Scaramuzza S, Carraro F et al. Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment[J]. Journal of Colloid and Interface Science, 489, 18-27(2017).
[128] Singh A, Vihinen J, Frankberg E et al. Pulsed laser ablation-induced green synthesis of TiO2 nanoparticles and application of novel small angle X-ray scattering technique for nanoparticle size and size distribution analysis[J]. Nanoscale Research Letters, 11, 447(2016).
[129] Hu X, Takada N, Machmudah S et al. Ultrasonic-enhanced fabrication of metal nanoparticles by laser ablation in liquid[J]. Industrial & Engineering Chemistry Research, 59, 7512-7519(2020).
[130] Chen Y Y, Bao L R, Wang H et al. Research progress in preparation of nanoparticles by laser ablation in liquid[J]. Chinese Journal of Lasers, 48, 0600002(2021).
[131] Takada N, Fujikawa A, Koshizaki N et al. Effect of ultrasonic wave on the syntheses of Au and ZnO nanoparticles by laser ablation in water[J]. Applied Physics A, 110, 835-839(2013).
[132] Takada N, Fujikawa A, Sasaki K. Control of plasma and cavitation bubble in liquid-phase laser ablation using supersonic waves[J]. Japanese Journal of Applied Physics, 50, 126201(2011).
[133] Dadras S, Jafarkhani P, Torkamany M J et al. Effects of ultrasound radiation on the synthesis of laser ablated gold nanoparticles[J]. Journal of Physics D: Applied Physics, 42, 025405(2009).
[134] Escobar-Alarcón L, Granados E V, Solís-Casados D A et al. Preparation of bismuth-based nanosheets by ultrasound-assisted liquid laser ablation[J]. Applied Physics A, 122, 433(2016).
[135] Escobar-Alarcón L, Espinosa-Pesqueira M E, Solis-Casados D A et al. Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field[J]. Applied Physics A, 124, 141(2018).
[136] Kang D, Zou P, Wu H et al. Theoretical and experimental study of ultrasonic vibration-assisted laser polishing 304 stainless steel[J]. IEEE Access, 8, 206146-206163(2020).
[137] Kang D, Zou P, Wu H et al. Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel[J]. Journal of Manufacturing Processes, 62, 403-417(2021).
[138] Zheng Q Z, Mei X S, Jiang G D et al. Investigation on ultrasonic vibration-assisted femtosecond laser polishing of C/SiC composites[J]. Journal of the European Ceramic Society, 43, 4656-4672(2023).
[139] Zhao Z Y, Wang C, Zhang Y J et al. A laser polishing device[P].
[140] Wang H P, Guan Y C, Zheng H Y. Smooth polishing of femtosecond laser induced craters on cemented carbide by ultrasonic vibration method[J]. Applied Surface Science, 426, 399-405(2017).
[141] Lei Z L, Tian Z, Chen Y B. Laser cleaning technology in industrial fields[J]. Laser & Optoelectronics Progress, 55, 030005(2018).
[142] Liu S G. Technical research of pulsed laser cleaning aluminum alloy surface paint coating[D](2022).
[143] Wang J X, Yuan X D, Ye Y Y et al. Ultrasonic assisted laser surface cleaning system and its cleaning method[P].
[144] Wang J X, Guo N H, Ye Y Y et al. Device and cleaning method for liquid flow ultrasonic composite assisted laser cleaning of optical components[P].
[145] Feng A X, Xue W, Lü Y W et al. Laser microfabrication device[P].
[146] Chiu C C, Chang C H, Lee Y C. Ultrasound assisted laser machining and surface cleaning[C], 872-875(2010).
[147] Alavi S H, Harimkar S P. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel[J]. Ultrasonics, 59, 21-30(2015).
Get Citation
Copy Citation Text
Zhehe Yao, Chenghao Pan, Yiming Chi, Jian Chen, Fabo Wang, Qunli Zhang, Jianhua Yao. Research Progress of Ultrasonic Assisted Laser Manufacturing Technology (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402103
Category: Laser Forming Manufacturing
Received: Dec. 16, 2023
Accepted: Jan. 29, 2024
Published Online: Feb. 28, 2024
The Author Email: Yao Jianhua (laser@zjut.edu.cn)
CSTR:32183.14.CJL231534