Journal of Synthetic Crystals, Volume. 51, Issue 2, 333(2022)
Research Progress on Wet Etching of Semiconductor SiC
[2] [2] SHE X, HUANG A Q, LUCA , et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.
[3] [3] ZHOU Y, PAN G S, ZOU C L, et al. Chemical mechanical polishing (CMP) of SiC wafer using photo-catalyst incorporated pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): P603-P608.
[4] [4] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422.
[5] [5] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103.
[6] [6] WU R B, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Progress in Materials Science, 2015, 72: 1-60.
[7] [7] STEINER J, RODER M, NGUYEN B D, et al. Analysis of the basal plane dislocation density and thermomechanical stress during 100 mm PVT growth of 4H-SiC[J]. Materials, 2019, 12(13): 2207.
[8] [8] SUN W, SONG Y T, LIU C J, et al. Basal plane dislocation-threading edge dislocation complex dislocations in 6H-SiC single crystals[J]. Materials Express, 2015, 5(1): 63-67.
[10] [10] HARRIS J M, GATOS H C, WITT A F. Identification of the (0001) and the (0001) surfaces of silicon carbide[J]. Journal of the Electrochemical Society, 1969, 116(5): 672.
[11] [11] CHRISTIANSEN K, HELBIG R. Anisotropic oxidation of 6H-SiC[J]. Journal of Applied Physics, 1996, 79(6): 3276-3281.
[12] [12] KAYAMBAKI M, TSAGARAKI K, CIMALLA V, et al. Crystal quality evaluation by electrochemical preferential etching of p-type SiC crystals[J]. Journal of the Electrochemical Society, 2000, 147(7): 2744.
[13] [13] CHANG W H. Micromachining of p-type 6H-SiC by electrochemical etching[J]. Sensors and Actuators A: Physical, 2004, 112(1): 36-43.
[14] [14] ZHANG Y, LI R L, ZHANG Y J, et al. Indiscriminate revelation of dislocations in single crystal SiC by inductively coupled plasma etching[J]. Journal of the European Ceramic Society, 2019, 39(9): 2831-2838.
[15] [15] KAWADA Y, TAWARA T, NAKAMURA S I, et al. Anisotropic transformation of 4H-SiC etching shapes by high-temperature annealing and its enhancement by ion implantation[J]. Japanese Journal of Applied Physics, 2010, 49(4): 040203.
[16] [16] ZHUANG D, EDGAR J H. Wet etching of GaN, AlN, and SiC: a review[J]. Materials Science and Engineering: R: Reports, 2005, 48(1): 1-46.
[18] [18] CORRA S A, RADTKE C, SOARES G V, et al. Presence and resistance to wet etching of silicon oxycarbides at the SiO2/SiC interface[J]. Electrochemical and Solid-State Letters, 2008, 11(9): H258.
[19] [19] IMAMURA K, AKAI T, KOBAYASHI H. Planarization mechanism for 6H-SiC (0001) Si-faced surfaces using electrochemical reactions[J]. Materials Research Express, 2019, 6(5): 055906.
[20] [20] VAN DORP D H, WEYHER J L, KELLY J J. Anodic etching of SiC in alkaline solutions[J]. Journal of Micromechanics and Microengineering, 2007, 17(4): S50-S55.
[21] [21] SHOR J S, KURTZ A D, GRIMBERG I, et al. Dopant-selective etch stops in 6H and 3C SiC[J]. Journal of Applied Physics, 1997, 81(3): 1546-1551.
[22] [22] MORISAKI H, ONO H, YAZAWA K. Photoelectrochemical properties of single-crystalline n-SiC in aqueous electrolytes[J]. Journal of the Electrochemical Society, 1984, 131(9): 2081-2086.
[23] [23] GERISCHER H. Electrolytic decomposition and photodecomposition of compound semiconductors in contact with electrolytes[J]. Journal of Vacuum Science and Technology, 1978, 15(4): 1422-1428.
[24] [24] SHOR J S, OSGOOD R M, KURTZ A D. Photoelectrochemical conductivity selective etch stops for SiC[J]. Applied Physics Letters, 1992, 60(8): 1001-1003.
[25] [25] VERHAVERBEKE S, TEERLINCK I, VINCKIER C, et al. The etching mechanisms of SiO2 in hydrofluoric acid[J]. Journal of the Electrochemical Society, 1994, 141(10): 2852-2857.
[26] [26] RYSY S, SADOWSKI H, HELBIG R. Electrochemical etching of silicon carbide[J]. Journal of Solid State Electrochemistry, 1999, 3(7/8): 437-445.
[27] [27] VAN DORP D H, SATTLER J J H B, DEN OTTER J H, et al. Electrochemistry of anodic etching of 4H and 6H-SiC in fluoride solution of pH 3[J]. Electrochimica Acta, 2009, 54(26): 6269-6275.
[28] [28] VAN DE LAGEMAAT J, VANMAEKELBERGH D, KELLY J J. Photoelectrochemical characterization of 6H-SiC[J]. Journal of Applied Physics, 1998, 83(11): 6089-6095.
[29] [29] CAO A T, LUONG Q N T, DAO C T. Influence of the anodic etching current density on the morphology of the porous SiC layer[J]. AIP Advances, 2014, 4(3): 037105.
[30] [30] SUGITA T, HIRAMATSU K, IKEDA S, et al. Fabrication of pores in a silicon carbide wafer by electrochemical etching with a glassy-carbon needle electrode[J]. ACS Applied Materials & Interfaces, 2013, 5(7): 2580-2584.
[31] [31] YANG X, SUN R Y, OHKUBO Y, et al. Investigation of anodic oxidation mechanism of 4H-SiC (0001) for electrochemical mechanical polishing[J]. Electrochimica Acta, 2018, 271: 666-676.
[32] [32] CHEN Z J, ZHAO Y H. Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions[J]. Electrochemistry Communications, 2019, 109: 106608.
[33] [33] YANG X Z, YANG X, KAWAI K, et al. Ultrasonic-assisted anodic oxidation of 4H-SiC (0001) surface[J]. Electrochemistry Communications, 2019, 100: 1-5.
[34] [34] SHISHKIN Y, KE Y, DEVATY R P, et al. Fabrication and morphology of porous p-type SiC[J]. Journal of Applied Physics, 2005, 97(4): 044908.
[35] [35] WANG S, HUANG Q, GUO R, et al. Study on the layering phenomenon of SiC porous layer fabricated by constant current electrochemical etching[J]. Nanotechnology, 2020, 31(20): 205702.
[36] [36] LIU Y, LIN W, LIN Z Y, et al. A combined etching process toward robust superhydrophobic SiC surfaces[J]. Nanotechnology, 2012, 23(25): 255703.
[37] [37] SHISHKIN Y, CHOYKE W J, DEVATY R P. Photoelectrochemical etching of n-type 4H silicon carbide[J]. Journal of Applied Physics, 2004, 96(4): 2311-2322.
[38] [38] BOZACK M J, CHOYKE W J, MUEHLHOFF L, et al. Reaction chemistry at the Si (100) surface: control through active-site manipulation[J]. Journal of Applied Physics, 1986, 60(10): 3750-3754.
[39] [39] GAUTIER G, CAYREL F, CAPELLE M, et al. Room light anodic etching of highly doped n-type 4H-SiC in high-concentration HF electrolytes: difference between C and Si crystalline faces[J]. Nanoscale Research Letters, 2012, 7(1): 1-6.
[40] [40] KE Y, YAN F, DEVATY R P, et al. Surface polishing by electrochemical etching of p-type 4H SiC[J]. Journal of Applied Physics, 2009, 106(6): 064901.
[41] [41] SHOR J S, GRIMBERG I, WEISS B Z, et al. Direct observation of porous SiC formed by anodization in HF[J]. Applied Physics Letters, 1993, 62(22): 2836-2838.
[42] [42] YANG X, SUN R Y, KAWAI K, et al. Surface modification and microstructuring of 4H-SiC(0001) by anodic oxidation with sodium chloride aqueous solution[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2535-2542.
[43] [43] IMONKA V, HSSINGER A, WEINBUB J, et al. Growth rates of dry thermal oxidation of 4H-silicon carbide[J]. Journal of Applied Physics, 2016, 120(13): 135705.
[44] [44] GOTO D, HIJIKATA Y, YAGI S, et al. Differences in SiC thermal oxidation process between crystalline surface orientations observed by in situ spectroscopic ellipsometry[J]. Journal of Applied Physics, 2015, 117(9): 095306.
[45] [45] SHOR J S, KURTZ A D. Photoelectrochemical etching of 6H-SiC[J]. Journal of the Electrochemical Society, 1994, 141(3): 778-781.
[46] [46] SCHNABEL C, WRNER M, GONZLEZ B, et al. Photoelectrochemical characterization of p- and n-doped single crystalline silicon carbide and photoinduced reductive dehalogenation of organic pollutants at p-doped silicon carbide[J]. Electrochimica Acta, 2001, 47(5): 719-727.
[48] [48] SHOR J S, ZHANG X G, OSGOOD R M. Laser-assisted photoelectrochemical etching of n-type beta - SiC[J]. Journal of the Electrochemical Society, 1992, 139(4): 1213-1216.
[49] [49] SHOR J S, OSGOOD R M. Broad-area photoelectrochemical etching of n-type beta - SiC[J]. Journal of the Electrochemical Society, 1993, 140(8): L123-L125.
[50] [50] VAN DORP D H, KELLY J J. Photoelectrochemistry of 4H-SiC in KOH solutions[J]. Journal of Electroanalytical Chemistry, 2007, 599(2): 260-266.
[51] [51] KATO M, ICHIMURA M, ARAI E, et al. Electrochemical etching of 6H-SiC using aqueous KOH solutions with low surface roughness[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 7A): 4233-4236.
[52] [52] PAL P, KUMAR S, SINGH S K. Study of eutectic etching process for defects analysis in n type 4H SiC[J]. Defence Science Journal, 2020, 70(5): 515-519.
[53] [53] SCHMITT E, STRAUBINGER T, RASP M, et al. Polytype stability and defects in differently doped bulk SiC[J]. Journal of Crystal Growth, 2008, 310(5): 966-970.
[54] [54] ZHANG Z, STAHLBUSH R E, PIROUZ P, et al. Characteristics of dislocation half-loop arrays in 4H-SiC homo-epilayer[J]. Journal of Electronic Materials, 2007, 36(5): 539-542.
[55] [55] AMELINCKX S, STRUMANE G, WEBB W W. Dislocations in silicon carbide[J]. Journal of Applied Physics, 1960, 31(8): 1359-1370.
[56] [56] GABOR T, STICKLER R. Chemical etching studies and transmission electron microscopy of silicon carbide[J]. Nature, 1963, 199(4898): 1054-1056.
[57] [57] BARTLETT R W, BARLOW M. Surface polarity and etching of beta-silicon carbide[J]. Journal of the Electrochemical Society, 1970, 117(11): 1436.
[58] [58] BRANDER R W, BOUGHEY A L. The etching of -silicon carbide[J]. British Journal of Applied Physics, 1967, 18(7): 905-1032.
[59] [59] MAHAJAN S, ROKADE M V, ALI S T, et al. Investigation of micropipe and defects in molten KOH etching of 6H n-silicon carbide (SiC) single crystal[J]. Materials Letters, 2013, 101: 72-75.
[60] [60] YANG X L, YU J Y, CHEN X F, et al. Basal plane bending of 4H-SiC single crystals grown by sublimation method with different seed attachment methods[J]. CrystEngComm, 2018, 20(43): 6957-6962.
[61] [61] BARTLETT R W, MARTIN G W. Imperfections in solution-grown β-silicon carbide crystals[J]. Journal of Applied Physics, 1968, 39(5): 2324-2329.
[62] [62] ZHANG Y, CHEN H, LIU D Z, et al. High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching[J]. Applied Surface Science, 2020, 525: 146532.
[63] [63] CUI Y X, HU X B, XIE X J, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982.
[64] [64] TOKURA N, HARA K, TAKEUCHI Y, et al. Anisotropy in thermal oxidation of 6H-SiC[M]//NAKASHIMA S, MATSUNAMI H, YOSHIDA S, et al. Silicon Carbide and Related Materials 1995. 1996: 637-640.
[65] [65] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Mechanism of molten KOH etching of SiC single crystals: comparative study with thermal oxidation[J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 8): 4661-4665.
[66] [66] MOKHOV E N, KAZAROVA O P, SOLTAMOV V A, et al. Influence of neutron irradiation on etching of SiC in KOH[J]. Technical Physics, 2017, 62(7): 1119-1121.
[67] [67] FUKUNAGA K, JUN S D, KIMOTO T. Anisotropic etching of single crystalline SiC using molten KOH for SiC bulk micromachining[C]//MOEMS-MEMS 2006 Micro and Nanofabrication. Proc SPIE 6109, Micromachining and Microfabrication Process Technology XI, San Jose, California, USA. 2006, 6109: 125-132.
[68] [68] SYVAJARVI M, YAKIMOVA R, JANZEN E. Anisotropic etching of SiC[J]. Journal of the Electrochemical Society, 2000, 147(9): 3519-3522.
[69] [69] SAKWE S A, JANG Y S, WELLMANN P J. Defect etching of non-polar and semi-polar faces in SiC[M]//Materials Science Forum. Stafa: Trans Tech Publications Ltd., 2007: 243-246.
[70] [70] SYVJRVI M, YAKIMOVA R, JANZéN E. Interfacial properties in liquid phase growth of SiC[J]. Journal of the Electrochemical Society, 1999, 146(4): 1565-1569.
[71] [71] SAKWE S A, MüLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526.
[72] [72] WEYHER J L, LAZAR S, BORYSIUK J, et al. Defect-selective etching of SiC[J]. Physica Status Solidi (a), 2005, 202(4): 578-583.
[73] [73] WU P, YOGANATHAN M, ZWIEBACK I. Defect evolution during growth of SiC crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1804-1809.
[74] [74] KATSUNO M, OHTANI N, AIGO T, et al. Structural properties of subgrain boundaries in bulk SiC crystals[J]. Journal of Crystal Growth, 2000, 216(1/2/3/4): 256-262.
[75] [75] SICHE D, KLIMM D, HLZEL T, et al. Reproducible defect etching of SiC single crystals[J]. Journal of Crystal Growth, 2004, 270(1/2): 1-6.
[77] [77] WU P, YOGANATHAN M, ZWIEBACK I, et al. Characterization of dislocations and micropipes in 4H n+ SiC substrates[J]. Materials Science Forum, 2008, 600/601/602/603: 333-336.
[78] [78] DONG L, ZHENG L, LIU X F, et al. Defect revelation and evaluation of 4H silicon carbide by optimized molten KOH etching method[J]. Materials Science Forum, 2013, 740/741/742: 243-246.
[79] [79] KALLINGER B, POLSTER S, BERWIAN P, et al. Threading dislocations in n- and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography[J]. Journal of Crystal Growth, 2011, 314(1): 21-29.
[80] [80] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates[J]. Japanese Journal of Applied Physics, 2011, 50(7R): 075502.
[81] [81] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Correlation between etch pits formed by molten KOH+Na2O2 etching and dislocation types in heavily doped n+-4H-SiC studied by X-ray topography[J]. Journal of Crystal Growth, 2013, 364: 7-10.
[82] [82] WAN J W, PARK S H, CHUNG G, et al. A comparative study of micropipe decoration and counting in conductive and semi-insulating silicon carbide wafers[J]. Journal of Electronic Materials, 2005, 34(10): 1342-1348.
[83] [83] YAO Y Z, ISHIKAWA Y, SATO K, et al. Dislocation revelation from (000(1)over-bar) carbon-face of 4H-SiC by using vaporized KOH at high temperature[J]. Applied Physics Express, 2012, 5(7): 075601.
[84] [84] WU P. Etching study of dislocations in heavily nitrogen doped SiC crystals[J]. Journal of Crystal Growth, 2010, 312(8): 1193-1198.
[85] [85] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001.
[86] [86] TAKAHASHI J, KANAYA M, FUJIWARA Y. Sublimation growth of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane[J]. Journal of Crystal Growth, 1994, 135(1/2): 61-70.
Get Citation
Copy Citation Text
ZHANG Xuqing, LUO Hao, LI Jiajun, WANG Rong, YANG Deren, PI Xiaodong. Research Progress on Wet Etching of Semiconductor SiC[J]. Journal of Synthetic Crystals, 2022, 51(2): 333
Category:
Received: Aug. 20, 2021
Accepted: --
Published Online: Mar. 24, 2022
The Author Email: Xuqing ZHANG (zhang_xuqing@zju.edu.cn)
CSTR:32186.14.