Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1011009(2024)

Surface Scattering and Imaging Characteristics of Rough Targets in Low-Frequency Terahertz Band

Xinyue Chai1, Hao Hu1, Xiaoxue Hu1, Xinru Ma1, Sixing Xi2, and Xiaolei Wang1、*
Author Affiliations
  • 1Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 2School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
  • show less
    References(26)

    [1] Lucyszyn S. Investigation of anomalous room temperature conduction losses in normal metals at terahertz frequencies[J]. IEE Proceedings-Microwaves, Antennas and Propagation, 151, 321-329(2004).

    [2] Rakić A D. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum[J]. Applied Optics, 34, 4755-4767(1995).

    [3] Yang Y, Yao J Q, Zhang J S et al. Terahertz scattering on rough copper surface[J]. Journal of Infrared and Millimeter Waves, 32, 36-39, 79(2013).

    [4] Yang L, Tong Q, Zhou Z Y et al. Numerical analysis of Mueller matrix for random rough surfaces[J]. Laser & Optoelectronics Progress, 60, 0529002(2023).

    [5] Ordal M A, Bell R J, Alexander R W, Jr et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 24, 4493-4499(1985).

    [6] Ordal M A, Bell R J, Alexander R W, Jr et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J]. Applied Optics, 27, 1203-1209(1988).

    [7] Markovic M I, Rakic A D. Determination of the reflection coefficients of laser light of wavelengths λϵ(0.22 μm, 200 μm) from the surface of aluminum using the Lorentz-Drude model[J]. Applied Optics, 29, 3479-3483(1990).

    [8] Wang H Q, Wang R J, Deng B et al[M]. Techniques for target scattering characteristics in the terahertz band, 29-31(2020).

    [9] Jagannathan A, Gatesman A J, Giles R H. Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra[J]. Optics Letters, 34, 1927-1929(2009).

    [10] DiGiovanni D A, Gatesman A J, Goyette T M et al. Surface and volumetric backscattering between 100 GHz and 1.6 THz[J]. Proceedings of SPIE, 9078, 90780A(2014).

    [11] Shi J, Zhong K, Liu C et al. Scattering properties of rough metal surface in terahertz region[J]. Infrared and Laser Engineering, 47, 1217004(2018).

    [12] Wang R J, Gao J K, Zhou F. Research on scattering center modeling of rough targets in terahertz band[J]. Journal of Microwaves, 37, 34-38, 45(2021).

    [13] Wang R J, Gao J K, Deng B et al. Scattering computation of rough convex targets at terahertz frequencies based on full-wave method[J]. Journal of Terahertz Science and Electronic Information Technology, 15, 903-908(2017).

    [14] Gao J K, Deng B, Qin Y L et al. Radar echo scattering modeling and image simulations of full-scale convex rough targets at terahertz frequencies[J]. Journal of Radars, 7, 97-107(2018).

    [15] Zhang M, Zhang X L, Jin Z et al. Research and application of denoising algorithm for Mie lidar signal[J]. Laser & Optoelectronics Progress, 60, 2028011(2023).

    [16] Fang Y J, Wang X, Su B H. Reconstruction of non-line-of-sight depth data using genetic algorithm Lucy-Richardson based on time of flight camera[J]. Acta Optica Sinica, 43, 2111002(2023).

    [18] Zhang J, Zhang Q, Zhang H et al. Optimization of Drude model with simulated annealing algorithm[J]. Journal of Physics: Conference Series, 1159, 032003(2021).

    [19] Chen Y, Qian H. Genetic algorithm for fitting drude model: a review[J]. Journal of Physics: Conference Series, 1159, 032001(2019).

    [20] Bao Z Y, Yu J Z, Yang S[M]. Intelligent optimization algorithm and MATLAB example, 9-19(2018).

    [21] Chen B Q, Wang J J, Cheng F Z. Drude classical electron theory of metal (1900) and London equation (1935) of superconductor[J]. College Physics, 26, 8-10(2007).

    [22] Beckmann P, Spizzichino A. The scattering of electromagnetic waves from rough surfaces[J]. Journal of Electromagnetic Waves and Applications, 23, 87-98(2009).

    [23] Guo L X, Wang R, Wu Z S[M]. Basic theory and method of random rough surface scattering(2010).

    [24] Hastings F D, Schneider J B, Broschat S L. A Monte-Carlo FDTD technique for rough surface scattering[J]. IEEE Transactions on Antennas and Propagation, 43, 1183-1191(1995).

    [25] Liang D C, Wei M G, Gu J Q et al. Broad-band time domain terahertz radar cross-section research in scale models[J]. Acta Physica Sinica, 63, 214102(2014).

    [26] Liu T, Li J, Pi Y M et al. Inverse synthetic aperture radar imaging of maneuvering target with distributed high resolution radars[J]. Journal of Applied Remote Sensing, 12, 025009(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xinyue Chai, Hao Hu, Xiaoxue Hu, Xinru Ma, Sixing Xi, Xiaolei Wang. Surface Scattering and Imaging Characteristics of Rough Targets in Low-Frequency Terahertz Band[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1011009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Oct. 12, 2023

    Accepted: Dec. 21, 2023

    Published Online: May. 9, 2024

    The Author Email: Xiaolei Wang (wangxiaolei@nankai.edu.cn)

    DOI:10.3788/LOP232282

    CSTR:32186.14.LOP232282

    Topics