Journal of Synthetic Crystals, Volume. 50, Issue 3, 484(2021)

Preparation and Electrical Properties of n-In0.35Ga0.65N/p-Si Heterojunction

WANG Ting1, ZHAO Hongli1, GUO Shiwei1, YAO Juan1, LI Shuang1, FU Yuechun1, SHEN Xiaoming1, and HE Huan2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(23)

    [1] [1] WU J, WALUKIEWICZ W, YU K M, et al. Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system[J]. Journal of Applied Physics, 2003, 94(10): 6477-6482.

    [2] [2] NEUFELD C J, CRUZ S C, FARRELL R M, et al. Effect of doping and polarization on carrier collection in InGaN quantum well solar cells[J]. Applied Physics Letters, 2011, 98(24): 243507.

    [3] [3] NEUFELD C J, TOLEDO N G, CRUZ S C, et al. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap[J]. Applied Physics Letters, 2008, 93(14): 143502.

    [4] [4] JANI O, FERGUSON I, HONSBERG C, et al. Design and characterization of GaNInGaN solar cells[J]. Applied Physics Letters, 2007, 91(13): 132117.

    [5] [5] FENG S W, LAI C M, CHEN C H, et al. Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells[J]. Journal of Applied Physics, 2010, 108(9): 093118.

    [6] [6] AISSAT A, ARBOUZ H, NACER S, et al. Efficiency optimization of the structure pin-InGaN/GaN and quantum well-InGaN for solar cells[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20867-20873.

    [7] [7] YAMAMOTO A, SUGITA K, BHUIYAN A G, et al. Metal-organic vapor-phase epitaxial growth of InGaN and InAlN for multi-junction tandem solar cells[J]. Materials for Renewable and Sustainable Energy, 2013, 2(2): 1-9.

    [8] [8] KAZAZIS S A, PAPADOMANOLAKI E, ANDROULIDAKI M, et al. Optical properties of InGaN thin films in the entire composition range[J]. Journal of Applied Physics, 2018, 123(12): 125101.

    [9] [9] CLINTON E A, VADIEE E, FABIEN C A M, et al. A review of the synthesis of reduced defect density InxGa1-xN for all indium compositions[J]. Solid-State Electronics, 2017, 136: 3-11.

    [10] [10] AGER III J W, REICHERTZ L A, CUI Y, et al. Electrical properties of InGaN-Si heterojunctions[J]. Physica Status Solidi C, 2009, 6(S2): S413-S416.

    [12] [12] CHEN, FEENSTRA, NORTHRUP, et al. Spontaneous formation of indium-rich nanostructures on InGaN(0001) surfaces[J]. Physical Review Letters, 2000, 85(9): 1902-1905.

    [13] [13] KRAWCZYK M, LISOWSKI W, SOBCZAK J W, et al. Surface and in-depth characterization of InGaN compounds synthesized by plasma-assisted molecular beam epitaxy[J]. Journal of Alloys and Compounds, 2011, 509(40): 9565-9571.

    [14] [14] HUNG I H, LAN Y R, WU T H, et al. Nanoscale InGaN/GaN on ZnO substrate for LED applications[C]//SPIE Optical Engineering + Applications. Proc SPIE 7422, Ninth International Conference on Solid State Lighting, San Diego, California, USA. 2009, 7422: 74220K.

    [15] [15] CARIN R, DEVILLE J P, WERCKMANN J. An XPS study of GaN thin films on GaAs[J]. Surface and Interface Analysis, 1990, 16(1/2/3/4/5/6/7/8/9/10/11/12): 65-69.

    [16] [16] LEONHARDT G, BERNDTSSON A, HEDMAN J, et al. ESCA studies of some AIIIBv compounds with Ga and As[J]. Physica Status Solidi (b), 1973, 60(1): 241-248.

    [17] [17] CRUZ-HERNNDEZ E, RAMIREZ-LOPEZ M, PREZ-CARO M, et al. Study of the pseudo-(1×1) surface by RHEED and XPS for InGaN/GaN (0001)/Al2O3 heterostructures grown by PA-MBE[J]. Journal of Crystal Growth, 2013, 378: 295-298.

    [18] [18] KAZAZIS S A, PAPADOMANOLAKI E, ANDROULIDAKI M, et al. Effect of rapid thermal annealing on polycrystalline InGaN thin films deposited on fused silica substrates[J]. Thin Solid Films, 2016, 611: 46-51.

    [19] [19] JENKINS D W, DOW J D. Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN[J]. Physical Review B, 1989, 39(5): 3317.

    [20] [20] CHEBIL W, GOKARNA A, FOUZRI A, et al. Study of the growth time effect on the structural, morphological and electrical characteristics of ZnO/p-Si heterojunction diodes grown by Sol-gel assisted chemical bath deposition method[J]. Journal of Alloys and Compounds, 2019, 771: 448-455.

    [21] [21] BAYAN S Y, MOHANTA D. Defect mediated optical emission of randomly oriented ZnO nanorods and unusual rectifying behavior of Schottky nanojunctions[J]. Journal of Applied Physics, 2011, 110(5): 054316.

    [22] [22] CHANDAN G, MUKUNDAN S, MOHAN L, et al. Trap modulated photoresponse of InGaN/Si isotype heterojunction at zero-bias[J]. Journal of Applied Physics, 2015, 118(2): 024503.

    [23] [23] FEDISON J B, CHOW T P, LU H, et al. Electrical characteristics of magnesium-doped gallium nitride junction diodes[J]. Applied Physics Letters, 1998, 72(22): 2841-2843.

    [24] [24] BHAT T N, RAJPALKE M K, ROUL B, et al. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy[J]. Journal of Applied Physics, 2011, 110(9): 093718.

    Tools

    Get Citation

    Copy Citation Text

    WANG Ting, ZHAO Hongli, GUO Shiwei, YAO Juan, LI Shuang, FU Yuechun, SHEN Xiaoming, HE Huan. Preparation and Electrical Properties of n-In0.35Ga0.65N/p-Si Heterojunction[J]. Journal of Synthetic Crystals, 2021, 50(3): 484

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 4, 2021

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics