Chinese Journal of Ship Research, Volume. 18, Issue 2, 149(2023)

Analysis of ultimate uniaxial compressive strength of stiffened panel considering influence of shear load

Ji YAN1,2, Jinju CUI1,2, and Deyu WANG1,2
Author Affiliations
  • 1State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    Figures & Tables(25)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Boundary conditions of two-span model with compression loads

      View table
      View in Article

      Table 1. Boundary conditions of two-span model with compression loads

      位置边界条件
      ADRy = Rz = 0,耦合端部节点并约束Ux一致,施加位移载荷
      A1D1Ry = Rz = 0,耦合端部节点且Ux = 0
      AA1,DD1Rx = Rz = 0,耦合端部节点并约束Uy一致
      EF,E1F1,BB1,CC1Uz = 0
    • Table 2. Boundary conditions of single-span model with compression loads

      View table
      View in Article

      Table 2. Boundary conditions of single-span model with compression loads

      位置边界条件
      ABRx = Rz = Uz = 0,耦合端部节点并约束Ux一致,施加位移载荷
      A1B1Rx = Rz = Uz = 0,耦合端部节点并约束Ux = 0
      AA1,BB1Ry = Rz = Uz = 0,耦合端部节点并约束Uy一致
    • Table 3. Boundary conditions of single-span model with in-plane shear loads

      View table
      View in Article

      Table 3. Boundary conditions of single-span model with in-plane shear loads

      位置边界条件
      ABUz = 0,耦合端部节点并约束Ux一致
      A1B1Uz = 0,耦合端部节点并约束Ux = 0
      AA1,BB1Uz = 0,约束板边节点Rz一致
      角点B1Uy = 0
    • Table 4. Cases for reliability verification of ultimate strength under axial compression

      View table
      View in Article

      Table 4. Cases for reliability verification of ultimate strength under axial compression

      参数算例1算例2
      ${t_{\rm{p}} }$/mm1518.5
      ${h_{\rm{w}} }$/mm580235
      ${t_{\rm{w}} }$/mm1510
      ${b_{\rm{f}} }$/mm15090
      ${t_{\rm{f}} }$/mm2015
    • Table 5. Calculation results of case 1 and case 2

      View table
      View in Article

      Table 5. Calculation results of case 1 and case 2

      模型轴压极限强度/MPa误差/%
      本文结果文献[11]结果
      单跨(算例1)240.96238.331.10
      双跨(算例1)233.09227.052.66
      单跨(算例2)234.45231.471.29
      双跨(算例2)201.25190.985.38
    • Table 6. Cases for reliability verification of ultimate shear stress

      View table
      View in Article

      Table 6. Cases for reliability verification of ultimate shear stress

      算例剪切极限应力/MPa误差/%
      本文结果文献结果
      WANG F t10165.87163.551.42
      WANG F t19175.78180.23−2.47
      ZHANG S150.95149.131.22
    • Table 7. Information of the sizes of stiffeners

      View table
      View in Article

      Table 7. Information of the sizes of stiffeners

      尺寸加强筋尺寸/mm
      F($ {h_{\rm{w}}} \times {t_{\rm{w}}} $A($ {h_{\rm{w}}} \times {b_{\rm{f}}} \times {t_{\rm{w}}}/{t_{\rm{f}}} $T($ {h_{\rm{w}}} \times {t_{\rm{w}}} + {b_{\rm{f}}} \times {t_{\rm{f}}} $
      Size 1$ 250 \times 25 $$ 235 \times 90 \times 10/15 $$ 235 \times 10 + 90 \times 15 $
      Size 2$ 350 \times 35 $$ 383 \times 100 \times 12/17 $$ 383 \times 12 + 100 \times 17 $
      Size 3$ 550 \times 35 $$ 580 \times 150 \times 15/20 $$ 580 \times 15 + 150 \times 20 $
    • Table 8. Ultimate stress of stiffened plate obtained by applying compression-shear load simultaneously with fixed proportion

      View table
      View in Article

      Table 8. Ultimate stress of stiffened plate obtained by applying compression-shear load simultaneously with fixed proportion

      $ {\sigma _x}:{\tau _{xy}} $极限状态应力/MPa
      8∶2${\sigma _{x{\rm{u}} } } = 230.72,{\text{ } }{\tau _{xy} } = 57.68$
      7∶3${\sigma _{x{\rm{u}} } } = 214.06,{\text{ } }{\tau _{xy} } = 91.74$
      6∶4${\sigma _{x{\rm{u}} } } = 183.18,{\text{ } }{\tau _{xy} } = 122.12$
      4∶6${\sigma _{x{\rm{u}} } } = 109.44,{\text{ } }{\tau _{xy} } = 164.16$
    • Table 9. Ultimate stress of stiffened plate as applying shear load to a specified value followed by axial compression load

      View table
      View in Article

      Table 9. Ultimate stress of stiffened plate as applying shear load to a specified value followed by axial compression load

      $ {\tau _{xy}}/{\tau _{y}} $极限状态应力/MPa
      0.2${\sigma _{x{\rm{u}} } } = 238.98,{\text{ } }{\tau _{xy} } = 36.21$
      0.4${\sigma _{x{\rm{u}} } } = 225.85,{\text{ } }{\tau _{xy} } = 72.42$
      0.6${\sigma _{x{\rm{u}} } } = 198.37,{\text{ } }{\tau _{xy} } = 108.63$
      0.8${\sigma _{x{\rm{u}} } } = 153.18,{\text{ } }{\tau _{xy} } = 144.85$
    • Table 10. Ultimate strength of three stiffened plates under combined loads of lateral pressure, shear and axial compression

      View table
      View in Article

      Table 10. Ultimate strength of three stiffened plates under combined loads of lateral pressure, shear and axial compression

      带板厚tp /mm纯轴压/MPa侧压/MPa侧压+轴压/MPa侧压+剪力(0.2)+轴压/MPa侧压+剪力(0.4)+轴压/MPa侧压+剪力(0.6)+轴压/MPa侧压+剪力(0.8)+轴压/MPa
      15.0226.480.10194.80 (100%)190.88 (98.0%)177.12 (90.9%)146.36 (75.1%)72.86 (37.4%)
      0.15174.62 (100%)170.61 (97.7%)155.41 (89.0%)122.05 (69.9%)46.00 (26.3%)
      18.5244.790.10214.97 (100%)211.11 (98.2%)197.27 (91.8%)171.57 (79.8%)114.30 (53.2%)
      0.15196.08 (100%)192.67 (98.3%)179.76 (91.7%)152.14 (77.6%)94.39 (48.1%)
      25.0280.420.10251.89 (100%)248.71 (98.7%)234.71 (93.2%)207.46 (82.4%)157.26 (62.4%)
      0.15237.83 (100%)230.86 (97.1%216.91 (91.2%)192.07 (80.8%)145.11 (61.0%)
    Tools

    Get Citation

    Copy Citation Text

    Ji YAN, Jinju CUI, Deyu WANG. Analysis of ultimate uniaxial compressive strength of stiffened panel considering influence of shear load[J]. Chinese Journal of Ship Research, 2023, 18(2): 149

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ship Structure and Fittings

    Received: Sep. 24, 2021

    Accepted: --

    Published Online: Mar. 20, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02540

    Topics