Chinese Journal of Lasers, Volume. 49, Issue 14, 1402209(2022)
Solidification Crack Elimination and Quality Control of High-Strength Aluminum Alloy 7075 Fabricated Using Laser Powder Bed Fusion
[1] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic componentsprocess, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018).
[2] Wang P, Eckert J, Prashanth K G et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 30, 2001-2034(2020).
[3] Wei H L, Cao Y, Liao W H et al. Mechanisms on inter-track void formation and phase transformation during laser powder bed fusion of Ti-6Al-4V[J]. Additive Manufacturing, 34, 101221(2020).
[4] Machirori T, Liu F Q, Yin Q Y et al. Spatiotemporal variations of residual stresses during multi-track and multi-layer deposition for laser powder bed fusion of Ti-6Al-4V[J]. Computational Materials Science, 195, 110462(2021).
[5] Qin L Y, Men J H, Zhao S et al. Effect of TiB2 content on microstructure and mechanical properties of TiB/Ti-6Al-4V composites formed by selective laser melting[J]. Chinese Journal of Lasers, 48, 0602102(2021).
[6] Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by selective laser melting (SLM): effect of laser energy density on microstructure, surface morphology, and hardness[J]. Journal of Manufacturing Processes, 52, 106-119(2020).
[7] Gu Z, Su X, Peng W S et al. An important improvement of strength and ductility on a new type of CoCr2.5FeNi2TiW0.5 high entropy alloys under two different protective gases by selective laser melting[J]. Journal of Alloys and Compounds, 868, 159088(2021).
[8] Wei H L, Knapp G L, Mukherjee T et al. Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718[J]. Additive Manufacturing, 25, 448-459(2019).
[9] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).
[10] Yang T, Liu T T, Liao W H et al. The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting[J]. Journal of Materials Processing Technology, 266, 26-36(2019).
[11] Xiao Y K, Yang Q, Bian Z Y et al. Microstructure, heat treatment and mechanical properties of TiB2/Al-7Si-Cu-Mg alloy fabricated by selective laser melting[J]. Materials Science and Engineering A, 809, 140951(2021).
[12] Jiang L Y, Liu T T, Zhang C D et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting[J]. Materials Science and Engineering A, 734, 171-177(2018).
[13] Aboulkhair N T, Simonelli M, Parry L et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 106, 100578(2019).
[14] Martin J H, Yahata B D, Hundley J M et al. 3D printing of high-strength aluminium alloys[J]. Nature, 549, 365-369(2017).
[15] Montero-Sistiaga M L, Mertens R, Vrancken B et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 238, 437-445(2016).
[16] Zhang J L, Gao J B, Song B et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting[J]. Additive Manufacturing, 38, 101829(2021).
[17] Stopyra W, Gruber K, Smolina I et al. Laser powder bed fusion of AA7075 alloy: influence of process parameters on porosity and hot cracking[J]. Additive Manufacturing, 35, 101270(2020).
[18] Cao Y, Wei H L, Yang T et al. Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion[J]. Additive Manufacturing, 46, 102103(2021).
[19] Spierings A B, Dawson K, Uggowitzer P J et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys[J]. Materials & Design, 140, 134-143(2018).
[20] Wei P, Wei Z Y, Chen Z et al. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior[J]. Applied Surface Science, 408, 38-50(2017).
[21] Tian Y, Tomus D, Rometsch P et al. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting[J]. Additive Manufacturing, 13, 103-112(2017).
[22] Tan Q Y, Liu Y G, Fan Z Q et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 58, 34-45(2020).
[23] Griffiths S, Rossell M D, Croteau J et al. Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 143, 34-42(2018).
[24] Li L B, Li R D, Yuan T C et al. Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu (Al7075) alloy by Si and Zr microalloying[J]. Materials Science and Engineering A, 787, 139492(2020).
[25] Li R D, Wang M B, Li Z M et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 193, 83-98(2020).
[26] Nie X J, Zhang H, Zhu H H et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys[J]. Journal of Alloys and Compounds, 764, 977-986(2018).
[27] Lei Z L, Bi J, Chen Y B et al. Effect of energy density on formability, microstructure and micro-hardness of selective laser melted Sc- and Zr- modified 7075 aluminum alloy[J]. Powder Technology, 356, 594-606(2019).
[28] Wan D Y, Li X Q, Lai J M et al. Microstructure properties and crack of 7075 aluminum alloy based on selective laser melting technology[J]. Applied Laser, 39, 1-8(2019).
[29] Liu J, Yao P, Zhao N Q et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys[J]. Journal of Alloys and Compounds, 657, 717-725(2016).
[30] Sun S Y, Liu P, Hu J Y et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM)[J]. Optics & Laser Technology, 114, 158-163(2019).
Get Citation
Copy Citation Text
Xinrui Lü, Tingting Liu, Wenhe Liao, Huiliang Wei, Tao Yang, Liyi Jiang. Solidification Crack Elimination and Quality Control of High-Strength Aluminum Alloy 7075 Fabricated Using Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2022, 49(14): 1402209
Received: Sep. 14, 2021
Accepted: Dec. 13, 2021
Published Online: Jun. 14, 2022
The Author Email: Liu Tingting (liutingting@mail.njust.edu.cn)