Laser & Optoelectronics Progress, Volume. 59, Issue 14, 1415025(2022)

Robotic Arm Visual Grasping Algorithm and System Based on RGB-D Images

Rui Qu1, Yong Li1,2、*, Feng Shuang1, and Hanzhang Huang1
Author Affiliations
  • 1Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi , China
  • 2Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, Guangxi , China
  • show less
    Figures & Tables(23)
    Structure of visual grasping system
    Hardware platform
    Target detection process
    Marking of centroid points. (a) Original images; (b) marking of the target centroid coordinates
    Flowchart of connected domain marking algorithm
    Extracted minimum bounding rectangle. (a) Images to be detected; (b) minimum bounding rectangle detected by the proposed algorithm for targets
    Schematic of pose angle calculation
    Marking of pose angle
    Schematic of UR5 structure on DH coordinate system
    Grasping process and process perspective. (a)-(d) Robotic arm grasping process; (e)-(h) corresponding perspectives
    Demonstration of single-target grasping experiment. (a) Target detection; (b) moving to target pose; (c) target grasping; (d) target placement
    Position error and angle error
    Demonstration of multi-target grasping experiment. (a) Target detection; (b)-(d) moving to target pose and grasping the targets; (e) target placement
    Comparative experiment display, the red box represents grasping failure, the green box represents grasping success
    • Table 1. DH parameters of UR5

      View table

      Table 1. DH parameters of UR5

      Joint number jTranslation djalong the Z-axisTranslation ajalong the X-axisRotation αjalong the X-axisRotation θjalong the Z-axis
      1d1= 89.4590π/2θ1
      20a2= -4250θ2
      30a3= -392.250θ3
      4d4= 109.150π/2θ4
      5d5= 94.650π/2θ5
      6d6= 82.300θ6
    • Table 2. Grasping results for regular objects

      View table

      Table 2. Grasping results for regular objects

      ParameterWood blockBoxCoke can
      Actual pose angle θ /(°)305530553055
      Measuring pose angle θ' /(°)333553573638515729275657
      Angle error Δθ /(°)35-2268-42-1-312
      Actual distance L/cm635961.852.853.165.253.864.956.161.256.361.8
      Measured distance L' /cm59.556.665.151.75369.952.368.358.172.358.269.2
      Distance error ΔL /cm3.54-2.43.3-1.1-0.14.7-1.53.4211.11.97.4
      Success rate /%100(7/7)100(7/7)85.7(6/7)
      Algorithm running time /s0.84360.83250.73440.81330.67190.69030.91840.78780.67770.79950.72650.7939
      Grasping quality(Excellent is E,Good is G)EGEEGEEEE-GG
    • Table 3. Grasping results for irregular objects

      View table

      Table 3. Grasping results for irregular objects

      ParameterConnectorStaplerScrewdriverUmbrella
      Actual pose angle θ /(°)3055305530553055
      Measuring pose angle θ' /(°)27245160383556552933555635286051
      Angle error Δθ /(°)-3-6-458510-13015-25-4
      Actual distance L /cm56.262.256.165.654.662.855.463.261.955.461.455.165.358.264.857.2
      Measured distance L' /cm5766.458.469.951.765.256.768.161.153.763.652.359.460.367.761.1
      Distance error ΔL /cm0.84.22.34.3-2.92.41.34.9-0.8-1.72.2-2.8-5.92.12.93.9
      Success rate /%71.4(5/7)71.4(5/7)57.1(4/7)85.7(6/7)
      Algorithm running time /s0.79050.79130.79070.78860.78870.83180.78870.78810.78790.72740.78740.78810.72780.78700.78830.7301
      Grasping quality(Excellent is E,Good is G)EEGGGEEEEEEE
    • Table 4. Grasping results for electric equipments

      View table

      Table 4. Grasping results for electric equipments

      ParameterEquipment-1Equipment-2Equipment-3
      Actual pose angleθ /(°)305530553055
      Measuring pose angle θ' /(°)363450533028535433285857
      Angle error Δθ /(°)64-5-21-2-2-13-232
      Actual distance L /cm54.857.262.758.456.860.254.461.759.657.365.260.3
      Measured distance L' /cm63.3361.7760.225657.6762.0758.2460.6657.4759.7863.2252.76
      Distance error ΔL /cm8.534.57-2.48-2.40.871.873.84-1.04-2.132.48-1.98-7.54
      Success rate /%85.7(6/7)100(7/7)100(7/7)
      Algorithm running time /s0.90270.82940.75180.80820.68310.74320.83840.66780.68310.81050.74570.8018
      Grasping quality(Excellent is E,Good is G)EEGGGEGGEG
    • Table 5. Grasping results for multi objects

      View table

      Table 5. Grasping results for multi objects

      ParameterBoxCola canStaplerScrewdriverCombination
      Average angle error -0.8571.428-2.429-1.2851.519
      Average distance error 1.2571.3572.8711.5851.943
      Success rate /%85.7(6/7)85.7(6/7)71.4(5/7)71.4(5/7)85.7(6/7)
      Average running time /s1.259
    • Table 6. Comparative experimental results of three algorithms

      View table

      Table 6. Comparative experimental results of three algorithms

      AlgorithmAverage angle error θ /(°)Average distance relative error /%Success rate /%Average running time /s
      Linemod-35.60(0/7)0.7651
      Algorithm in Ref.[61.6472.1471.4(5/7)0.7613
      Proposed algorithm1.4281.9685.7(6/7)0.7494
    • Table 7. Comparison results of three algorithms for different targets

      View table

      Table 7. Comparison results of three algorithms for different targets

      Algorithm Parameter

      Wood block

      Box

      Coke can

      Connector

      Stapler

      Screwdriver

      Umbrella

      Linemod

      SA /%

      14.3

      28.5

      0

      14.3

      28.5

      0

      14.3

      AAS /s

      0.8455

      0.8030

      0.7651

      0.8965

      0.8343

      0.8437

      0.7846

      Algorithm in Ref.[6

      SA /%

      86

      100

      71.40

      57.10

      85.70

      57.10

      71.40

      AAS /s

      0.8248

      0.7782

      0.7601

      0.8053

      0.8142

      0.7819

      0.7671

      Proposed algorithm

      SA /%

      100

      100

      85.7

      71.4

      71.4

      57.1

      85.7

      AAS /s

      0.8060

      0.7671

      0.7494

      0.7903

      0.7993

      0.7727

      0.7583

    • Table 8. Target segmentation ablation experiment results

      View table

      Table 8. Target segmentation ablation experiment results

      MethodSingle objectMulti objects
      Total time /sIoU /%Total time /sIoU /%
      K-means0.09892.40.10593.5
      K-means+OTSU0.25896.30.32496.8
      OTSU0.07695.60.08694.2
      Improved OTSU0.02399.10.03498.9
    • Table 9. Connected domain ablation experiment results

      View table

      Table 9. Connected domain ablation experiment results

      MethodCentroid shift /%Invalid region percentage /%
      Without CD-84.3
      CD3.213.42
      CD+MSC0.420.36
    Tools

    Get Citation

    Copy Citation Text

    Rui Qu, Yong Li, Feng Shuang, Hanzhang Huang. Robotic Arm Visual Grasping Algorithm and System Based on RGB-D Images[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415025

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 21, 2022

    Accepted: May. 23, 2022

    Published Online: Jul. 1, 2022

    The Author Email: Yong Li (yongli@gxu.edu.cn)

    DOI:10.3788/LOP202259.1415025

    Topics