Acta Photonica Sinica, Volume. 51, Issue 12, 1210005(2022)
Visual Fusion Technology of Dim-lightening Tunnel Entrance
[1] KUMAR A, BHANDARI A K, KUMAR R. 3D color channel based adaptive contrast enhancement using compensated histogram system[J]. Multimedia Systems, 27, 563-580(2021).
[2] CHENG Wenao, XU Ming, GAO Jinfeng. Spatial domain image generation and fusion method of single-phase grounding fault line selection for small current grounding system[J]. Electric Power Automation Equipment, 41, 97-103(2021).
[3] ZHANG S Q, LI X F, ZHANG X L et al. Infrared and visible image fusion based on saliency detection and two-scale transform decomposition[J]. Infrared Physics & Technology, 114, 103626(2021).
[4] PARK S, YU S, KIM M et al. Dual autoencoder network for Retinex-based low-light image enhancement[J]. IEEE Access, 6, 22084-22093(2018).
[5] YANG Jiuzhang, LIU Weijian, CHENG Yang. Asymmetric infrared and visible image fusion based on contrast pyramid and bilateral filtering[J]. Infrared Technology, 43, 840-844(2021).
[6] CHEN Hao, LAI Huicheng, GAO Guxue et al. Sand-dust image enhancement based on multi-exposure image fusion[J]. Acta Photonica Sinica, 50, 0910003(2021).
[7] BIANCO S, CUSANO C, PICCOLI F et al. Personalized image enhancement using neural spline color transforms[J]. IEEE Transactions on Image Processing, 29, 6223-6236(2020).
[8] LORE K G, AKINTAYO A, SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 61, 650-662(2017).
[9] AMINUDIN M F C, SUANDI S A. Video surveillance image enhancement via a convolutional neural network and stacked denoising autoencoder[J]. Neural Computing & Applications, 34, 3079-3095(2021).
[10] LU H M, LI Y J, UEMURA T et al. Low illumination underwater light field images reconstruction using deep convolutional neural networks[J]. Future Generation Computer Systems-The International Journal of eScience, 82, 142-148(2018).
[11] FALLAH M, AZADBAKHT M. Fusion of thermal infrared and visible images based on multi-scale transform and sparse representation[J]. Journal of Geospatial Information Technology, 8, 39-59(2021).
[12] REN L, PAN Z B, CAO J Z et al. Infrared and visible image fusion based on edge-preserving guided filter and infrared feature decomposition[J]. Signal Processing, 186, 108108(2021).
[13] LIU Y C, DONG L L, XU W H. Infrared and visible image fusion via salient object extraction and low-light region enhancement[J]. Infrared Physics & Technology, 124, 104223(2022).
[14] BUDHIRAJA S, SHARMA R, AGRAWAL S et al. Infrared and visible image fusion using modified spatial frequency-based clustered dictionary[J]. Pattern Analysis and Applications, 24, 575-589(2021).
[15] MEI Jialin, DU Zhigang, ZHENG Haoran et al. Research on visual load at entrance area of extra-long tunnel in different periods[J]. China Safety Science Journal, 31, 176-181(2021).
[16] PARIS S, DURAND F. A fast approximation of the bilateral filter using a signal processing approach[J]. International Journal of Computer Vision, 81, 24-52(2009).
[17] WANG Zhao, DU Qingzhi, LONG Hua et al. Infrared and visible image fusion based on CSR and energy features[J]. Laser & Infrared, 51, 1088-1096(2021).
[18] SHEN Ying, HUANG Chunhong, HUANG Feng et al. Research progress of infrared and visible image fusion technology[J]. Infrared and Laser Engineering, 50, 1-18(2021).
[19] KANWAL N, JAIN S, KAUR P. Evaluating robustness for intensity based image registration measures using mutual information and normalized mutual information[J]. Learning and Analytics in Intelligent Systems, 17, 73-81(2020).
[20] ZHANG W D, WU Q M J, YANG Y M et al. Fast ship detection with spatial-frequency analysis and ANOVA-based feature fusion[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2021).
[21] MOHANRAM C, BHASHYAM S. A sub-optimal joint subcarrier and power allocation algorithm for multiuser OFDM[J]. IEEE Communications Letters, 9, 685-687(2005).
[22] LIU C, YANG B, LI Y et al. An information retention and feature transmission network for infrared and visible image fusion[J]. IEEE Sensors Journal, 21, 14950-14959(2021).
[23] ROBERTS J W, AARDT J, AHMED F. Assessment of image fusion procedures using entropy, image quality and multispectral classification[J]. Journal of Applied Remote Sensing, 2, 1-28(2008).
[24] ZHANG X Y, MA Y, FAN F et al. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 34, 1400-1410(2017).
[25] FREDEMBACH C, BARBUSCIA N, SÜSSTRUNK S et al. Combining visible and near-infrared images for realistic skin smoothing[C](2009).
[26] CONNAH D, DREW M S, FINLAYSON G D. Spectral edge image fusion: theory and applications[J]. European Conference on Computer Vision, 8693, 65-80(2014).
[27] WU Chuan. Multi-scale image fusion based on bilateral filter[J]. Computer engineering and applications, 51, 31-34(2015).
[28] LI H F, QIU H M, YU Z T et al. Infrared and visible image fusion scheme based on NSCT and low-level visual features[J]. Infrared Physics & Technology, 76, 174-184(2016).
[29] CHEN YaoJia, ZHANG Yongping, TIAN Jianyan. Multi-focus image fusion based on blocked sparse representation[J]. Ideo Engineering, 36, 48-51+63(2012).
Get Citation
Copy Citation Text
Lian MA, Qinglu MA, Binglin FU, Jianghua WANG. Visual Fusion Technology of Dim-lightening Tunnel Entrance[J]. Acta Photonica Sinica, 2022, 51(12): 1210005
Category:
Received: Apr. 13, 2022
Accepted: Jul. 6, 2022
Published Online: Feb. 6, 2023
The Author Email: Lian MA (ml@mails.cqjtu.edu.cn)