Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1015004(2025)

LiDAR Object Detection Method Based on Multi-Stage Feature Extraction

Zhipeng Zhai1, Jinju Shao1、*, Song Gao1, Zhibing Duan1, and Lei Wang2
Author Affiliations
  • 1School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong , China
  • 2Realepo Technology (Shandong) Co., Ltd., Zibo 255000, Shandong , China
  • show less
    Figures & Tables(17)
    PointPillars detection network diagram[16]
    Proposed detection network block diagram
    Improved pooling method flow chart
    Global attention mechanism network structure[28]
    Hollow convolution algorithm network flow chart
    SSD algorithm flow chart
    Trend diagrams of training process parameters. (a) Curve of learning rate with the number of iteration steps; (b) curves of detection error with the number of iteration steps
    Dataset detection effect pictures. (a) Images; (b) Velodyne
    Vehicle used in the experiment
    Real vehicle algorithm detection effect diagrams. (a) Original images; (b) Velodyne
    • Table 1. IoU threshold and detection box settings

      View table

      Table 1. IoU threshold and detection box settings

      ClassDifferent grade IoU threshold settingCheck frame size (length, width, and height) /m
      EasyMediumHard
      Car0.70.70.7(1.30,3.90,1.50)
      Cyclist0.70.70.7(0.60,1.76,1.73)
      Pedestrian0.50.50.5(0.60,0.80,1.73)
    • Table 2. Detection accuracy of different algorithms on dataset from BEV perspective

      View table

      Table 2. Detection accuracy of different algorithms on dataset from BEV perspective

      ModelCarPedestrianCyclistmAP
      EasyMediumHardEasyMediumHardEasyMediumHard
      SECOND88.0784.0075.3358.0950.2247.2083.6666.1962.1368.24
      VoxelNet89.3579.2677.3946.1340.7438.1166.754.7650.5560.33
      F-PointNet88.7084.0075.3358.0951.0547.5475.3861.6954.6866.27
      PointPillars92.0587.8085.1956.5350.8346.4381.3265.0760.7369.55
      Proposed91.7687.7385.2661.7954.1349.5684.7968.9664.5872.06
    • Table 3. Detection accuracy of different algorithms on dataset from 3D perspective

      View table

      Table 3. Detection accuracy of different algorithms on dataset from 3D perspective

      ModelCarPedestrianCyclistmAP
      EasyMediumHardEasyMediumHardEasyMediumHard
      SECOND86.4476.9773.3947.4740.4736.2681.2863.4959.2962.78
      VoxelNet77.4765.1157.7339.4833.6931.5061.2248.3644.3750.99
      F-PointNet81.2070.3962.1951.2144.8940.2371.9656.7750.3958.80
      PointPillars85.0375.7672.7450.0844.1839.5377.1360.9456.9162.48
      Proposed86.9976.1073.2355.7047.8442.2581.0163.3359.7465.13
    • Table 4. Detection accuracy of different algorithms on dataset from AOS perspective

      View table

      Table 4. Detection accuracy of different algorithms on dataset from AOS perspective

      ModelCarPedestrianCyclistmAP
      EasyMediumHardEasyMediumHardEasyMediumHard
      SECOND94.8490.9490.1160.0153.9250.7789.4072.8268.8774.63
      SubCNN90.6188.4378.6378.3366.2861.3771.3963.4146.3471.64
      AVOD-FPN89.9587.1379.7453.3644.9243.7767.6157.5354.1664.24
      PointPillars95.0291.2488.4647.3344.4041.3184.7571.3567.2470.12
      Proposed95.2891.4588.7757.8751.4047.4986.4774.3070.2873.70
    • Table 5. Detection accuracy of the ablation experiment from BEV perspective on KITTI dataset

      View table

      Table 5. Detection accuracy of the ablation experiment from BEV perspective on KITTI dataset

      ModelCarPedestrianCyclistmAP
      EasyMediumHardEasyMediumHardEasyMediumHard
      PP91.0587.8085.1956.5750.8346.4381.3265.0760.7369.55
      PP+ZC91.6687.6584.9458.0651.5846.9885.9668.2963.8270.99
      PP+KD91.7487.4084.9457.6651.0546.5285.6466.1161.6670.31
      PP+GA92.0387.9985.2158.2751.6147.4381.8865.0060.7370.02
      PP+ZC+KD91.5787.5885.0757.9551.3147.1184.7566.6262.0170.56
      PP+GA+KD91.6587.7185.1158.8452.3347.8584.8366.5462.4470.81
      PP+ZC+KD+GA91.7687.7385.2661.7954.1349.5684.7968.9664.5872.06
    • Table 6. Detection accuracy of ablation experiment from 3D perspective on KITTI dataset

      View table

      Table 6. Detection accuracy of ablation experiment from 3D perspective on KITTI dataset

      ModelCarPedestrianCyclistmAP
      EasyMediumHardEasyMediumHardEasyMediumHard
      PP85.0375.7672.7450.0844.1839.5377.1360.9456.9162.48
      PP+ZC86.9375.5472.5451.2344.8740.0380.5963.5359.0863.82
      PP+KD86.5175.6772.5951.6544.8840.1382.0262.9458.4563.88
      PP+GA87.0375.8972.8950.9644.1939.5880.7362.9458.6963.02
      PP+ZC+KD86.6475.8972.8151.8144.7840.4977.7361.0156.9863.65
      PP+GA+KD84.9475.6972.6651.9344.9340.3482.3262.3158.2463.71
      PP+ZC+KD+GA86.9976.1073.2355.7047.8442.2581.0163.3359.7465.13
    • Table 7. Detection accuracy of ablation experiment from AOS perspective on KITTI dataset

      View table

      Table 7. Detection accuracy of ablation experiment from AOS perspective on KITTI dataset

      ModelCarPedestrianCyclistmAP
      EasyMediumHardEasyMediumHardEasyMediumHard
      PP95.0291.2488.4650.0844.1841.3184.7571.3567.2470.12
      PP+ZC95.2891.3488.5151.0847.1044.0785.3767.8663.7270.48
      PP+KD95.2691.1488.3650.4945.7242.6389.0572.8168.0171.50
      PP+GA95.3091.3288.5849.4245.6342.7488.0971.1866.9971.03
      PP+ZC+KD95.4091.5788.6050.9246.7143.5984.6573.1168.9071.50
      PP+GA+KD95.1191.1488.4151.4646.5243.1687.6075.2070.8172.16
      PP+ZC+KD+GA95.2891.4588.7757.8751.4047.4986.4774.3070.2873.70
    Tools

    Get Citation

    Copy Citation Text

    Zhipeng Zhai, Jinju Shao, Song Gao, Zhibing Duan, Lei Wang. LiDAR Object Detection Method Based on Multi-Stage Feature Extraction[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1015004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 24, 2024

    Accepted: Nov. 1, 2024

    Published Online: May. 8, 2025

    The Author Email: Jinju Shao (sjjgbh@163.com)

    DOI:10.3788/LOP242028

    CSTR:32186.14.LOP242028

    Topics