Laser & Optoelectronics Progress, Volume. 59, Issue 6, 0617019(2022)

Automated Analysis Methods for Autofluorescence Lifetime Microscopic Images of Yeast

Jiahui Zhong1, Junxin Wu2, Yawei Kong2, Wenhua Su2, Jiong Ma1,2、*, and Lan Mi1,2、**
Author Affiliations
  • 1Institute of Biomedical Engineering and Technology, Academy for Engineer and Technology, Fudan University, Shanghai 200433, China
  • 2Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    References(36)

    [24] Mu H W, Guo Y, Quan X H et al. Magnetic resonance imaging brain tumor image segmentation based on improved U-Net[J]. Laser & Optoelectronics Progress, 58, 0410022(2021).

    [25] Luo W J, Han G Q, Tian X D. Retinal vessel segmentation method based on multi-scale attention analytic network[J]. Laser & Optoelectronics Progress, 58, 2017001(2021).

    [27] Xu W H, Pei Y J, Gao D L et al. Mass classification of breast mammogram based on attention mechanism and transfer learning[J]. Laser & Optoelectronics Progress, 58, 0410007(2021).

    [31] van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 9, 2579-2605(2008).

    Tools

    Get Citation

    Copy Citation Text

    Jiahui Zhong, Junxin Wu, Yawei Kong, Wenhua Su, Jiong Ma, Lan Mi. Automated Analysis Methods for Autofluorescence Lifetime Microscopic Images of Yeast[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Nov. 22, 2021

    Accepted: Dec. 31, 2021

    Published Online: Mar. 8, 2022

    The Author Email: Jiong Ma (lanmi@fudan.edu.cn), Lan Mi (jiongma@fudan.edu.cn)

    DOI:10.3788/LOP202259.0617019

    Topics