Acta Optica Sinica, Volume. 44, Issue 18, 1828007(2024)
Self-Supervised Feature Learning Method for Hyperspectral Images Based on Mixed Convolutional Networks
[2] Mao Y W, Guo Y, Zhang W F et al. Tree species classification by combining LiDAR, hyperspectral data and 3D-CNN method[J]. Scientia Silvae Sinicae, 59, 73-83(2023).
[5] Zhong Y F, Wang X Y, Hu X et al. Hyperspectral with high-spatial resolution remote sensing from observation, processing to applications[J]. Acta Geodaetica et Cartographica Sinica, 52, 1212-1226(2023).
[9] Hu J, Chen N, Xu W C et al. Three-dimensional lane detection algorithm of lidar based on adaptive gating and dual pathways[J]. Chinese Journal of Lasers, 50, 2210001(2023).
[21] Chen T, Kornblith S, Norouzi M et al. A simple framework for contrastive learning of visual representations[C], 1597-1607(2020).
[23] Hang R L, Li C X, Liu Q S. Inter-spectral contrast learning based unsupervised feature extraction for hyperspectral images[J]. Acta Geodaetica et Cartographica Sinica, 52, 1164-1174(2023).
[29] Li N, Zhao H J, Jia G R. Dimensional reduction method based on factor analysis model for hyperspectral data[J]. Journal of Image and Graphics, 16, 2030-2035(2011).
Get Citation
Copy Citation Text
Fan Feng, Yongsheng Zhang, Jin Zhang, Bing Liu, Ying Yu. Self-Supervised Feature Learning Method for Hyperspectral Images Based on Mixed Convolutional Networks[J]. Acta Optica Sinica, 2024, 44(18): 1828007
Category: Remote Sensing and Sensors
Received: Nov. 10, 2023
Accepted: Feb. 2, 2024
Published Online: Sep. 11, 2024
The Author Email: Feng Fan (fengrs1991@163.com)
CSTR:32393.14.AOS231776