Acta Optica Sinica, Volume. 44, Issue 18, 1828007(2024)

Self-Supervised Feature Learning Method for Hyperspectral Images Based on Mixed Convolutional Networks

Fan Feng1、*, Yongsheng Zhang1, Jin Zhang1, Bing Liu2, and Ying Yu1
Author Affiliations
  • 1Institute of Geospatial Information, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, Henan , China
  • 2Institute of Data and Target Engineering, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, Henan , China
  • show less
    Figures & Tables(14)
    Schematic diagram of self-supervised spatial-spectral feature extraction framework
    Schematic diagram of network structure of SS-MFN
    Classification maps of IP dataset
    Classification maps of HU dataset
    Classification maps of LK dataset
    Classification maps of HC dataset
    • Table 1. Basic information of experimental hyperspectral datasets

      View table

      Table 1. Basic information of experimental hyperspectral datasets

      Data informationIPHULKHC
      Spectral range /μm0.4-2.50.38-1.050.4-1.00.4-1.0
      Number of bands200144270274
      Spatial resolution /m202.50.4630.109
      Image size145×145349×1905550×4001217×303
      Number of labeled data1024915029204542257530
      Number of classes1615916
      Number of samples used in self-supervised learning10249150295000050000
      Number of samples used in fine-tuning80754580
    • Table 2. Classification results of different models in IP dataset

      View table

      Table 2. Classification results of different models in IP dataset

      No.AD-HybridSNA2S2K-ResNetSSFTTSPRLTDMVLSS-MFN
      198.0594.3999.7698.0551.6498.05
      245.4938.4052.1458.4966.8368.21
      350.5642.8752.9847.7773.4363.84
      491.1284.2290.3089.8361.8491.38
      579.2371.8080.7383.2882.3081.63
      691.2680.6294.5994.0893.7594.69
      7100.00100.00100.00100.0026.31100.00
      897.0684.6992.9297.1091.9898.60
      9100.0098.67100.00100.0022.68100.00
      1064.3852.0071.8877.6771.8071.96
      1164.7056.2058.4558.7690.8172.17
      1263.4046.8058.0867.2872.6873.47
      1397.7598.7098.1099.6086.7999.20
      1488.2086.3888.9190.0896.0199.02
      1580.5082.2377.9086.3887.8184.44
      1698.6499.0999.2099.3290.9697.39
      Kappa66.69±4.6857.67±7.9366.74±3.8069.50±3.3576.04±3.1676.87±2.25
      OA70.16±4.4262.36±7.1370.29±3.5172.67±3.0678.14±2.8779.46±2.03
      AA81.90±2.2376.07±5.7482.25±1.9484.23±1.5972.98±3.9587.13±1.12
    • Table 3. Classification results of different models in HU dataset

      View table

      Table 3. Classification results of different models in HU dataset

      No.AD-HybridSNA2S2K-ResNetSSFTTSPRLTDMVLSS-MFN
      177.8985.3579.2380.2678.6484.36
      282.3783.4685.5282.3472.6289.23
      395.7298.7096.2399.5198.6797.57
      482.5393.2783.5188.8877.8091.69
      597.9780.9398.4799.5383.9999.98
      681.8179.4183.1990.2899.4081.31
      762.7368.6260.8252.8878.4982.14
      849.6939.5543.4753.0455.4161.10
      959.8962.9554.8836.3576.0071.86
      1065.3641.1271.1253.0485.6675.54
      1172.5257.0881.0858.6387.9887.67
      1265.2045.7062.6158.7660.5680.28
      1391.4282.4186.0677.3781.4695.99
      1499.9895.4499.79100.00100.00100.00
      1598.6198.6795.9199.0499.9890.06
      Kappa73.63±3.7768.15±3.6673.72±3.8468.85±2.1774.03±4.0883.06±1.79
      OA75.54±3.5170.48±3.4075.67±3.5671.14±2.0275.59±3.7684.32±1.65
      AA78.91±2.6874.18±3.0678.79±3.2175.33±1.5282.44±2.8885.92±1.09
    • Table 4. Classification results of different models in LK dataset

      View table

      Table 4. Classification results of different models in LK dataset

      No.AD-HybridSNA2S2K-ResNetSSFTTSPRLTDMVLSS-MFN
      193.0297.4395.1193.2792.2998.95
      295.3593.3992.5752.9282.4295.23
      398.7093.5598.8479.8638.6698.73
      484.5683.0672.8866.4695.5988.36
      587.5286.7592.7863.3235.9199.53
      691.4596.9996.0395.7290.6096.69
      793.1099.3295.8697.7999.8194.85
      877.2080.2173.6471.7487.3275.76
      983.0681.7485.4477.4252.6688.11
      Kappa86.69±3.7489.90±3.7284.04±4.3078.51±2.5384.42±2.8590.96±3.10
      OA89.60±3.0392.14±2.9787.45±3.5182.99±2.1487.83±2.3492.97±2.48
      AA89.33±1.9590.27±2.2289.24±1.7277.61±1.3475.03±2.0592.91±1.81
    • Table 5. Classification results of different models in HC dataset

      View table

      Table 5. Classification results of different models in HC dataset

      No.AD-HybridSNA2S2K-ResNetSSFTTSPRLTDMVLSS-MFN
      164.3029.0853.3856.6876.4776.54
      256.3037.4966.8934.6777.9875.03
      383.3753.0567.9939.4838.9889.08
      496.4167.1487.3270.5337.4098.35
      597.2671.8475.4683.6225.3999.01
      654.4723.5044.3223.0513.1671.97
      773.4181.3084.3978.6845.3294.88
      855.3836.4748.8638.1551.0361.32
      958.5526.6753.3334.2643.8771.70
      1078.4445.6277.2657.4834.1991.05
      1170.8555.0776.2961.4652.7877.56
      1275.4836.8364.7848.1730.5085.79
      1348.0726.1145.5035.3735.7456.30
      1455.9149.9851.8348.7378.6773.61
      1582.5569.7276.5379.8329.7890.40
      1686.2775.3688.9489.4390.0196.43
      Kappa66.79±5.7544.96±9.4264.51±6.5155.17±4.1555.23±3.2679.50±2.75
      OA70.88±5.3650.92±9.0968.97±6.0460.85±4.0761.12±3.1982.31±2.40
      AA71.06±2.4749.08±6.8066.44±6.1654.97±2.2047.58±2.7081.81±1.92
    • Table 6. Experimental results of model ablation

      View table

      Table 6. Experimental results of model ablation

      ModelDescriptionIPHULKHC
      SS-MFNProposed method79.4684.3292.9782.31
      Model-1Using PCA instead of FA76.5182.3792.5976.40
      Model-2Without contrastive learning78.1877.9490.6181.79
      Model-3Without SOP77.6080.1791.1281.70
    • Table 7. Experimental results of contrastive learning-related settings

      View table

      Table 7. Experimental results of contrastive learning-related settings

      Experimental targetExperimental settingIPHULKHC
      SS-MFN79.4684.3292.9782.31
      Data augmentationUsing Crop only80.8478.7387.5182.14
      Using RCA only77.8981.0592.7480.01
      Projection headWithout BN78.5782.7092.9981.89
      EncoderLinear probe72.2579.2686.8770.77
    • Table 8. Running time of each method

      View table

      Table 8. Running time of each method

      StageAD-HybridSNA2S2K-ResNetSSFTTSPRLTDMVLSS-MFN
      Self-supervised learning3386.691538.39
      Fine-tuning9.97217.036.7672.230.4915.06
      Testing3.233.200.926.942.803.24
    Tools

    Get Citation

    Copy Citation Text

    Fan Feng, Yongsheng Zhang, Jin Zhang, Bing Liu, Ying Yu. Self-Supervised Feature Learning Method for Hyperspectral Images Based on Mixed Convolutional Networks[J]. Acta Optica Sinica, 2024, 44(18): 1828007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 10, 2023

    Accepted: Feb. 2, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Feng Fan (fengrs1991@163.com)

    DOI:10.3788/AOS231776

    CSTR:32393.14.AOS231776

    Topics