Acta Physica Sinica, Volume. 69, Issue 12, 127711-1(2020)

Research progress of the investigation of intrinsic and extrinsic origin of piezoelectric materials by X-ray diffraction

Guan-Jie Zhang, Hao Yang, and Nan Zhang*
Author Affiliations
  • Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    Figures & Tables(15)
    Principle of stroboscopic data-acquisition
    (a) Data acquisition system by Choe et al.[40]; (b) signal synchronization process in the system of Choe et al.[40]; (c) data acquisition system by Daniels et al.[41]; (d) timing sequences for data acquisition processes in the system of Daniels et al.; (e) time dependence of the AC electric field and the collected intensity of diffraction wings, showing the field-induced intensity exchange between the two wings[40]. (a) (b) (e) Copyright © 2017 International Union of Crystallography. Reproduced with permission of the International Union of Crystallography.
    Diffraction intensity of the X-ray around the {00h} family of reflections of NBT single crystal: (a) Static ω versus 2θ mesh of the {002} reflections family; (b) the time-dependence of the applied external electric field (along [001]); (c)−(e) stroboscopically collected versus 2θ meshes of the {004} family of reflections, corresponding to different time channels and electric fields[33]
    Two ω versus 2θ maps for different {hkl}pc of NBT single crystal collected on the high-resolution diffractometer. The lines indicate the simulated position of the scattering angle: from top to bottom, rhombohedral, monoclinic, and a combination of rhombohedral and tetragonal: (a) {222}; (b) {114}[46] (Copyright © 2010 International Union of Crystallography. Reproduced with permission of the International Union of Crystallography)
    Experimental set-up for time-resolved high-energy X-ray diffraction. Different sections in the Debye ring correspond to grains with specific angles respect to the applied E field[49] (Copyright © 2011 John Wiley and Sons).
    η002 as a function of the field amplitude as well as orientation with respect to the direction of applied field, for an unpoled La-doped tetragonal PZT ceramic under the application of static electric fields. The measured and fitted (002)-type diffraction peaks corresponding to the particular values of η002 (marked by circles and indicated by arrows) are shown in the bottom section of the figure. For the fitted diffraction patterns, the deconvoluted (200) and (002) peaks are shown in black solid lines. The integration of individual (002) and (200) peaks are terminated beyond the peak position of the adjacent peak, as indicated by the color-shaded areas[49] (Copyright © 2011 John Wiley and Sons).
    Measured (a) and modelled (b) orientation dependent diffraction patterns of NBT-BT at maximum field Emax = 4 kV/mm[60] (Copyright © 2015 AIP Publishing).
    Contributions of lattice strain and domain wall motion to macroscopic piezoelectric coefficient and non-linear piezoelectric coefficient in La-doped PbZr0.52Ti0.48O3 ceramics[49] (Copyright © 2011 John Wiley and Sons)
    (1–x)(K1–yNay)(Nb1–zSbz)O3-xBi0.5(Na1–wKw)0.5HfO3 ceramic with x = 0.035, y = 0.52, z = 0.05 and w = 0.18: (a), (b) Evolution of the (100) and (220) pseudocubic reflections as a function of the electric field; (c) ratio of low angle peak intensity to high angle intensity (I1/I2) for (100) and (220) pseudocubic reflections as a function of the electric field[64] (Copyright © 2017 The Royal Society of Chemistry)
    {200} reflections and their redistributions under electric field for NN-BT[68] (Copyright © 2017 AIP Publishing)
    (a) The X dependence of the diffraction intensity around {111} reflections, integrated within the full YZ range. The vertical red and blue lines mark the center of mass positions corresponding to the E+ and states. (b), (c) YZ dependence of the diffraction intensity integrated within two ranges of X, corresponding to Group 1 and Group 2 in panel (a). Several boxes are marked to show the positions of Bragg peak sub-components. (d), (e) Integrated intensities within one YZ box against X under four states of field. (d) Corresponds to Box 2 in Group 1 and (e) to Box 2 in Group 2[70] (Copyright © 2018 International Union of Crystallography. Reproduced with permission of the International Union of Crystallography)
    The two possible paths for the polarization direction to change from [111] in the rhombohedral (R) phase to [001] in the tetragonal (T) phase[18,76] (Copyright © 2001 American Physical Society)
    Polarization rotation path of rhombohedral-monoclinic-orthorhombic phase in KNN-based ceramic
    For 0.94NBT-0.06BT ceramic, (a) unipolar strain hysteresis at 25, 50, 75, and 100 ℃; (b) temperature-dependence of recoverable strain (Smax – Srem)[80] (Copyright © 2013 AIP Publishing)
    Contour plots of the {111}, {200} and {220} peak profiles for (a) = 0° and (b) = 90° obtained from the in situ X-ray diffraction experiment for BF-0.3 BT-0.03 NLN, with two cycles of electric field poling under ± 60 kV/cm[82] (Copyright © 2019 The Royal Society of Chemistry)
    Tools

    Get Citation

    Copy Citation Text

    Guan-Jie Zhang, Hao Yang, Nan Zhang. Research progress of the investigation of intrinsic and extrinsic origin of piezoelectric materials by X-ray diffraction[J]. Acta Physica Sinica, 2020, 69(12): 127711-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 27, 2020

    Accepted: --

    Published Online: Dec. 8, 2020

    The Author Email:

    DOI:10.7498/aps.69.20200301

    Topics