Optics and Precision Engineering, Volume. 33, Issue 11, 1691(2025)

Enhancing sensitivity of multi-pass cavity enhanced Raman gas detection

Shangjin LI1,2, Tenglong DING1,2, Yanqun ZHANG1,2, Dianqiang SU1,2, Zhonghua JI1,2, Weiguang MA1,2, and Yanting ZHAO1,2、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan030006, China
  • show less
    References(41)

    [1] 何子聪, 童杏林, 黄文种. 拉曼光谱在气体检测中的研究进展[J]. 激光杂志, 42, 1-7(2021).

         HE Z C, TONG X L, HUANG W ZH. Research progress of Raman spectroscopy in gas detection[J]. Laser Journal, 42, 1-7(2021).

    [2] ZHOU Q F, LU Y, LI A et al. Research progress of gas Raman spectroscopy detection technology[J]. Chinese Journal of Analytical Chemistry, 52, 925-936(2024).

         周启帆, 陆于, 李澳. 气体拉曼光谱检测技术的研究进展[J]. 分析化学, 52, 925-936(2024).

    [3] WEN B Y. Accurate Quantitative Analysis Based on Raman Spectroscopy[D](2021).

         温宝英. 基于拉曼光谱技术的精准定量分析[D](2021).

    [4] 高颖, 戴连奎, 朱华东. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学, 47, 67-76(2019).

         GAO Y, DAI L K, ZHU H D et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 47, 67-76(2019).

    [5] GONG Y X, MA CH T. Raman spectroscopy and its application in modern science and technology[J]. Modern Physics, 18, 24-28(2006).

         宫衍香, 吕刚, 马传涛. 拉曼光谱及其在现代科技中的应用[J]. 现代物理知识, 18, 24-28(2006).

    [6] ZHENG S Q. Research on the Detection of Heavy Metalions and Small Sulfur-containing Gas Molecules in the Environment Based on Surface-Enhanced Raman Spectroscopy[D](2021).

         郑思倾. 基于表面增强拉曼光谱的环境中重金属离子和含硫气体小分子检测研究[D](2021).

    [7] HU J Y, BI J K, SUN CH L et al. Study on two-dimensional correlation Raman spectroscopy of pyridine nonresonant coupling (Fermi resonance)[J]. Spectroscopy and Spectral Analysis, 43, 173-174(2023).

         忽俊颖, 毕敬凯, 孙成林. 吡啶非谐振耦合(费米共振)的二维相关拉曼光谱研究[J]. 光谱学与光谱分析, 43, 173-174(2023).

    [8] LI SH, WANG J X, HE Y et al. The effect of resonance effect and electron-phonon coupling on resonance Raman spectra of linear polymers[J]. Spectroscopy and Spectral Analysis, 42, 454-458(2022).

         李硕, 王俊星, 何越. 共振拉曼效应和电子-声子耦合对线性多烯分子共振拉曼光谱的影响[J]. 光谱学与光谱分析, 42, 454-458(2022).

    [9] LI J W, LIU M, ZHU J Y et al. Ag-coated Au nanostar-based lateral flow immunoassay for highly sensitive influenza A virus antibody detection in colorimetric and Surface-Enhanced Raman Scattering (SERS) modes[J]. Talanta, 285, 127351(2025).

    [10] WANG N, LIU Y, ZHANG J et al. Recent advances and applications of surface-enhanced Raman spectroscopy technology based on flexible substrates[J]. Chinese Journal of Lasers, 51, 2107401(2024).

         王楠, 刘艺, 张竣. 基于柔性基底的表面增强拉曼光谱应用研究进展[J]. 中国激光, 51, 2107401(2024).

    [11] 仰青颖, 程存峰, 孙羽. 腔增强拉曼光谱方法检测痕量氢气[J]. 量子电子学报, 38, 669-676(2021).

         YANG Q Y, CHENG C F, SUN Y et al. Cavity-enhanced Raman spectroscopy for trace hydrogen gas sensing[J]. Chinese Journal of Quantum Electronics, 38, 669-676(2021).

    [12] 郑喆元. 录井气体拉曼光谱定量分析方法研究[D](2021).

         ZHENG ZH Y. Research on Quantitative Analysis Method of Logging Gas Raman Spectroscopy[D](2021).

    [13] KONG A D, YANG D W, GUO J J et al. Application of cavity-enhanced gas Raman spectroscopy in gas logging[J]. Opt. Precision Eng., 30, 1151-1159(2022).

         孔安栋, 杨德旺, 郭金家. 腔增强气体拉曼光谱仪在气测录井中的应用[J]. 光学 精密工程, 30, 1151-1159(2022).

    [14] YANG D W, LI W H, TIAN H Y et al. High-sensitivity and in situ multi-component detection of gases based on multiple-reflection-cavity-enhanced Raman spectroscopy[J]. Sensors, 24, 5825(2024).

    [15] LI B, LUO SH W, YU A L et al. Confocal-cavity-enhanced Raman scattering of ambient air[J]. Acta Physica Sinica, 66, 40-46(2017).

         李斌, 罗时文, 余安澜. 共焦腔增强的空气拉曼散射[J]. 物理学报, 66, 40-46(2017).

    [16] YANG SH H, ZHAO W J, HOU CH C et al. Raman signal enhancement for gas detection using multiple reflections and increased pressure[J]. Laser & Optoelectronics Progress, 60, 263-268(2023).

         杨申昊, 赵韦静, 侯春彩. 多次反射与加压增强气体拉曼信号方法的研究[J]. 激光与光电子学进展, 60, 263-268(2023).

    [17] WANG CH D, WANG P Y, TANG Z J et al. Z-shaped multi-pass cavity enhanced Raman spectroscopy for detecting transformer faulting gases[J]. Acta Photonica Sinica, 54, 92-99(2025).

         王畅鼎, 王品一, 汤子杰. Z型多反腔增强拉曼光谱变压器故障特征气体检测方法[J]. 光子学报, 54, 92-99(2025).

    [18] WAN F, LUO ZH Y, SUN H CH et al. Optical feedback Raman spectroscopy gas detection technology in complex environment[J]. Acta Photonica Sinica, 53, 154-162(2024).

         万福, 罗智懿, 孙宏程. 复杂环境下光学反馈拉曼光谱气体检测技术研究[J]. 光子学报, 53, 154-162(2024).

    [19] 任永甜, 胡仪, 陈骏. 氢气拉曼光谱压缩感知方法分析研究[J]. 光谱学与光谱分析, 42, 776-782(2022).

         REN Y T, HU Y, CHEN J et al. Study on compressed sensing method for Raman spectroscopic analysis of isotope hydrogen gas[J]. Spectroscopy and Spectral Analysis, 42, 776-782(2022).

    [20] ZHANG Z H, ZHANG F B, XU B et al. High-sensitivity gas detection with air-lasing-assisted coherent Raman spectroscopy[J]. Ultrafast Science, 2022, 2022-9761458(2022).

    [21] 刘庆省, 杨德旺, 郭金家. 基于折叠近共心腔的拉曼光谱气体探测方法研究[J]. 光谱学与光谱分析, 40, 3390-3393(2020).

         LIU Q SH, YANG D W, GUO J J et al. Raman spectroscopy for gas detection using a folded near-concentric cavity[J]. Spectroscopy and Spectral Analysis, 40, 3390-3393(2020).

    [22] YANG D W, GUO J J, DU Z F et al. Raman signal enhancement for gas detection using a near concentric cavity[J]. Spectroscopy and Spectral Analysis, 35, 645-648(2015).

         杨德旺, 郭金家, 杜增丰. 近共心腔气体拉曼光谱增强方法研究[J]. 光谱学与光谱分析, 35, 645-648(2015).

    Tools

    Get Citation

    Copy Citation Text

    Shangjin LI, Tenglong DING, Yanqun ZHANG, Dianqiang SU, Zhonghua JI, Weiguang MA, Yanting ZHAO. Enhancing sensitivity of multi-pass cavity enhanced Raman gas detection[J]. Optics and Precision Engineering, 2025, 33(11): 1691

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 5, 2025

    Accepted: --

    Published Online: Aug. 14, 2025

    The Author Email:

    DOI:10.37188/OPE.20253311.1691

    Topics