Laser Technology, Volume. 48, Issue 6, 790(2024)
Research progress on high preformance mid-infrared antimonide semiconductor lasers
[1] [1] LIN W L, TSAI H K, LEE S C, et al. Identification of infrared absorption peaks of amorphous silicon-carbon alloy by thermal annealing[J]. Applied Physics Letters, 1987, 51(25): 2112-2114.
[2] [2] BACH T, HUCK N, WEZEL F, et al. 70 vs 120 W thulium: yttrium-aluminium-garnet 2 m continuous-wave laser for the treatment of benign prostatic hyperplasia: A systematic ex-vivo evaluation[J]. BJU international, 2010, 106(3): 368-372.
[3] [3] RICCHIAZZI P, YANG S, GAUTIER C, et al. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere[J]. Bulletin of the American Meteorological Society, 1998, 79(10): 2101-2114.
[4] [4] PELC J S, MA L, PHILLIPS C, et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: Performance and noise analysis[J]. Optics Express, 2011, 19(22): 21445-21456.
[5] [5] CANEAU C, SRIVASTAVA A, DENTAI A, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 m[J]. Electronics Letters, 1985, 18(21): 815-817.
[6] [6] CHIU T H, TSANG W T, DITZENBERGER J A, et al. Room-temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2 m prepared by molecular beam epitaxy[J]. Applied Physics Letters, 1986, 49(17): 1051-1052.
[7] [7] CHOI H K, EGLASH S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 m with low threshold current density[J]. Applied Physics Letters, 1992, 61(10): 1154-1156.
[8] [8] GARBUZOV D Z, MARTINELLI R U, LEE H, et al. 4 W quasi-continuous-wave output power from 2 m AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22): 2931-2933.
[9] [9] RATTUNDE M, MERMELSTEIN C, SCHMITZ J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn) (AsSb)-based 2.0 m diode lasers[J]. Applied Physics Letters, 2002, 80(22): 4085-4087.
[10] [10] RATTUNDE M, SCHMITZ J, KAUFEL G, et al. GaSb-based 2.X m quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 081115.
[11] [11] LI Z G, LIU G J, YOU M H, et al. 2.0 m room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6): 1230-1233.
[12] [12] XIE S, YANG C, HUANG S, et al. 2.1 m InGaSb quantum well lasers exhibiting the maximum conversion efficiency of 27.5% with digitally grown AlGaAsSb barriers and gradient layers[J]. Superlattices and Microstructures, 2019, 130: 339-345.
[13] [13] XIE S W, ZHANG Y, YANG C A, et al. High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars[J]. Chinese Physics, 2019, B28(1): 014208.
[14] [14] CHEN Y, YANG C, WANG T, et al. High-power, high-efficiency gasb-based laser with compositionally linearly graded AlGaAsSb layer[J]. Applied Sciences, 2023, 13(9): 5506.
[15] [15] SHI J, YANG C, WANG T, et al. Ultra-stable and low-divergence high-power antimonide light emitters with on-chip mode filter[J]. Applied Physics Letters, 2023, 123(12): 121105.
[16] [16] WANG T, YANG C, CHEN Y, et al. High power GaSb-based superluminescent diode with cascade cavity suppression waveguide geometry and ultra-low antireflection coating[J]. Applied Physics Letters, 2023, 123(2): 021102.
[18] [18] LIAU Z L, FLANDERS D C, WALPOLE J N, et al. A novel GaInAsP/InP distributed feedback laser[J]. Applied Physics Letters, 1985, 46(3): 221-223.
[19] [19] BLEUEL T, BROCKHAUS M, KOETH J, et al. GaInAsSb/AlGaAsSb: Single-mode DFB lasers for gas sensing in the 2 m wavelength range[J]. Proceedings of the SPIE, 1999, 3858: 372907.
[20] [20] SALHI A, BARAT D, ROMANINI D, et al. Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 m above room temperature for application in tunable diode laser absorption spectroscopy[J]. Applied Optics, 2006, 45(20): 4957-4965.
[21] [21] BELAHSENE S, NAEHLE L, FISCHER M, et al. Laser diodes for gas sensing emitting at 3.06 m at room temperature[J]. IEEE Photonics Technology Letters, 2010, 22(15): 1084-1086.
[22] [22] HARING K, VIHERIL J, VILJANEN M R, et al. Laterally-coupled distributed feedback InGaSb/GaSb diode lasers fabricated by nanoimprint lithography[J]. Electronics Letters, 2010, 46(16): 1146-1147.
[23] [23] VIHERIL J, HARING K, SUOMALAINEN S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2016, 28(11): 1233-1236.
[24] [24] YANG C A, ZHANG Y, LIAO Y P, et al. 2 m single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics, 2016, B25(2): 024204.
[25] [25] YANG C A, XIE S W, ZHANG Y, et al. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 m[J]. Applied Physics Letters, 2019, 114(2): 021102.
[26] [26] YU H, YANG C, CHEN Y, et al. Robust design of mid-infrared GaSb-based single-mode laser diode fabricated by standard photolithography with socketed ridge-waveguide modulation[J]. Optics Express, 2023, 31(21): 34011-34020.
[27] [27] WANG T, YANG C, CHEN Y, et al. Coupling performance enhancement of gasb-based single-transverse-mode lasers with reduced beam divergence obtained via near field modulation[J]. Photonics, 2022, 9(12): 942.
[28] [28] WANG T, YANG C, CHEN Y, et al. Promotion of specific single-transverse-mode beam characteristics for gasb-based narrow ridge waveguide lasers via customized parameter design[J]. Nanoscale Research Letters, 2022, 17(1): 116.
[31] [31] YANG R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlattices and Microstructures, 1995, 17(1): 77-83.
[32] [32] KIM M, CANEDY C L, BEWLEY W W, et al. Interband cascade laser emitting at =3.75 m in continuous wave above room temperature[J]. Applied Physics Letters, 2008, 92(19): 191110.
[33] [33] VURGAFTMAN I, BEWLEY W W, CANEDY C L, et al. Reba-lancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2011, 2(1): 585.
[34] [34] CANEDY C, ABELL J, MERRITT C, et al. High-power CW performance of 7-stage interband cascade lasers[C]//2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications. New York, USA: IEEE Press, 2014: 126-132.
[35] [35] ZHANG Y, SHAO F H, YANG C A, et al. Room-temperature continuous-wave interband cascade laser emitting at 3.45 m[J]. Chinese Physics, 2018, B27(12): 124207.
[36] [36] ZHANG Y, SHAO F H, YANG C A, et al. Wavelength tuning of type-Ⅱ “W” quantum well of interband cascade laser[J]. Proceedings of the SPIE, 2018, 10052: 2521757.
[38] [38] CERUTTI L, GARNACHE A, GENTY F, et al. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 m[J]. Electronics Letters, 2003, 39(3): 290-292.
[39] [39] HOPKINS J M, HEMPLER N, RSENER B, et al. High-power, (AlGaIn) (AsSb) semiconductor disk laser at 2.0 m[J]. Optics Letters, 2008, 33(2): 201-203.
[40] [40] HOLL P, RATTUNDE M, ADLER S, et al. GaSb-based 2.0 m SDL with 17 W output power at 20 ℃[J]. Electronics Letters, 2016, 52(21): 1794-1795.
[41] [41] SHANG J M, FENG J, YANG C A, et al. High quality 2 m GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy[J]. Chinese Physics, 2019, B28(3): 034202.
[42] [42] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.
[43] [43] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
[44] [44] IMADA M, NODA S, CHUTINAN A, et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure[J]. Applied Physics Letters, 1999, 75(3): 316-318.
[45] [45] MEIER M, MEKIS A, DODABALAPUR A, et al. Laser action from two-dimensional distributed feedback in photonic crystals[J]. Applied Physics Letters, 1999, 74(1): 7-9.
[46] [46] YOSHIDA M, de ZOYSA M, ISHIZAKI K, et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 2019, 18(2): 121-128.
[47] [47] YANG L, LI G, GAO X, et al. Topological-cavity surface-emitting laser[J]. Nature Photonics, 2022, 16(4): 279-283.
[48] [48] MA J, ZHOU T, TANG M, et al. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon[J]. Light: Science & Applications, 2023, 12(1): 255.
Get Citation
Copy Citation Text
CAO Juntian, YANG Cheng’ao, CHEN Yihang, YU Hongguang, SHI Jianmei, WANG Tianfang, WEN Haoran, WANG Zhiyuan, GENG Zhengqi, ZHANG Yu, ZHAO Youwen, WU Donghai, XU Yingqiang, NI Haiqiao, NIU Zhichuan. Research progress on high preformance mid-infrared antimonide semiconductor lasers[J]. Laser Technology, 2024, 48(6): 790
Category:
Received: Dec. 26, 2023
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: YANG Cheng’ao (yangchengao@semi.ac.cn)