Acta Optica Sinica, Volume. 44, Issue 7, 0700001(2024)

Recent Progress in Optical Lateral Forces (Invited)

Yuzhi Shi1,2,3,4、*, Chengxing Lai1,2,3,4, Weicheng Yi1,2,3,4, Haiyang Huang1,2,3,4, Chao Feng1,2,3,4, Tao He1,2,3,4, Aiqun Liu5, Weicheng Qiu6, Zhanshan Wang1,2,3,4, and Xinbin Cheng1,2,3,4、**
Author Affiliations
  • 1Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2Key Laboratory of Advanced Micro-Structure Materials, Ministry of Education, Shanghai 200092, China
  • 3Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • 4Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, Shanghai 200092, China
  • 5Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • 6Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • show less
    References(280)

    [1] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [2] Phillips W D. Nobel Lecture: laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 70, 721-741(1998).

    [3] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 6, 2023-2045(1989).

    [4] Chu S, Hollberg L, Bjorkholm J E et al. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure[J]. Physical Review Letters, 55, 48-51(1985).

    [5] Kasevich M, Chu S. Laser cooling below a photon recoil with three-level atoms[J]. Physical Review Letters, 69, 1741-1744(1992).

    [6] Lett P D, Watts R N, Westbrook C I et al. Observation of atoms laser cooled below the Doppler limit[J]. Physical Review Letters, 61, 169-172(1988).

    [7] Mitra D, Vilas N B, Hallas C et al. Direct laser cooling of a symmetric top molecule[J]. Science, 369, 1366-1369(2020).

    [8] Shi Y Z, Liu A Q, Qiu C W et al. Research progress on optofluidic optical tweezers[J]. Optics and Precision Engineering, 30, 2765-2782(2022).

    [9] Zhu Z, Zhang Y Q, Zhang S S et al. Nonlinear optical trapping effect with reverse saturable absorption[J]. Advanced Photonics, 5, 046006(2023).

    [10] Pu J J, Zeng K, Wu Y L et al. Miniature optical force levitation system[J]. Chinese Optics Letters, 20, 013801(2022).

    [11] Chen J, Ng J, Lin Z F et al. Optical pulling force[J]. Nature Photonics, 5, 531-534(2011).

    [12] Li H, Cao Y Y, Shi B J et al. Momentum-topology-induced optical pulling force[J]. Physical Review Letters, 124, 143901(2020).

    [13] Brzobohatý O, Karásek V, Šiler M et al. Experimental demonstration of optical transport, sorting and self-arrangement using a tractor beam[J]. Nature Photonics, 7, 123-127(2013).

    [14] Novitsky A, Qiu C W, Wang H F. Single gradientless light beam drags particles as tractor beams[J]. Physical Review Letters, 107, 203601(2011).

    [15] Li H, Cao Y Y, Zhou L M et al. Optical pulling forces and their applications[J]. Advances in Optics and Photonics, 12, 288-366(2020).

    [16] Li X, Chen J, Lin Z F et al. Optical pulling at macroscopic distances[J]. Science Advances, 5, eaau7814(2019).

    [17] Wang N, Lu W L, Ng J et al. Optimized optical tractor beam for core-shell nanoparticles[J]. Optics Letters, 39, 2399-2402(2014).

    [18] Petrov M I, Sukhov S V, Bogdanov A A et al. Surface plasmon polariton assisted optical pulling force[J]. Laser & Photonics Reviews, 10, 116-122(2016).

    [19] Mahdy M R C, Zhang T H, Das S C et al. On chip optical tractor beam by surface plasmon polariton[J]. Optics Communications, 463, 125395(2020).

    [20] Zhang Y Q, Min C J, Dou X J et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light, Science & Applications, 10, 59(2021).

    [21] Roxworthy B J, Ko K D, Kumar A et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting[J]. Nano Letters, 12, 796-801(2012).

    [22] Jin R C, Xu Y H, Dong Z G et al. Optical pulling forces enabled by hyperbolic metamaterials[J]. Nano Letters, 21, 10431-10437(2021).

    [23] Shalin A S, Sukhov S V, Bogdanov A A et al. Optical pulling forces in hyperbolic metamaterials[J]. Physical Review A, 91, 063830(2015).

    [24] Lepeshov S, Krasnok A. Virtual optical pulling force[J]. Optica, 7, 1024-1030(2020).

    [25] Lee E, Luo T. Long-distance optical pulling of nanoparticle in a low index cavity using a single plane wave[J]. Science Advances, 6, eaaz3646(2020).

    [26] Poynting J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society of London Series A: Containing Papers of a Mathematical and Physical Character, 82, 560-567(1909).

    [27] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [28] Shi Y Z, Song Q H, Toftul I et al. Optical manipulation with metamaterial structures[J]. Applied Physics Reviews, 9, 031303(2022).

    [29] Shen Y J, Wang X J, Xie Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light, Science & Applications, 8, 90(2019).

    [30] Bliokh K Y, Bekshaev A Y, Nori F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 5, 3300(2014).

    [31] Bekshaev A Y, Bliokh K Y, Nori F. Transverse spin and momentum in two-wave interference[J]. Physical Review X, 5, 011039(2015).

    [32] Xu X H, Nieto-Vesperinas M. Azimuthal imaginary Poynting momentum density[J]. Physical Review Letters, 123, 233902(2019).

    [33] Fu Y N, Zhang Y Q, Min C J et al. Lateral forces on particles induced by magnetic spin-orbit coupling[J]. Optics Express, 28, 13116-13124(2020).

    [34] Hayat A, Mueller J P, Capasso F. Lateral chirality-sorting optical forces[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 13190-13194(2015).

    [35] Girón-Sedas J A, Kingsley-Smith J J, Rodríguez-Fortuño F J. Lateral optical force on linearly polarized dipoles near a magneto-optical surface based on polarization conversion[J]. Physical Review B, 100, 075419(2019).

    [36] Yang B, Sun H, Huang C J et al. Cooling and entangling ultracold atoms in optical lattices[J]. Science, 369, 550-553(2020).

    [37] Kaufman A M, Lester B J, Regal C A. Cooling a single atom in an optical tweezer to its quantum ground state[J]. Physical Review X, 2, 041014(2012).

    [38] Kastberg A, Phillips W D, Rolston S L et al. Adiabatic cooling of cesium to 700 nK in an optical lattice[J]. Physical Review Letters, 74, 1542-1545(1995).

    [39] Shi Y Z, Xiong S, Chin L K et al. Nanometer-precision linear sorting with synchronized optofluidic dual barriers[J]. Science Advances, 4, eaao0773(2018).

    [40] Shi Y Z, Xiong S, Zhang Y et al. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement[J]. Nature Communications, 9, 815(2018).

    [41] Wang M M, Tu E, Raymond D E et al. Microfluidic sorting of mammalian cells by optical force switching[J]. Nature Biotechnology, 23, 83-87(2005).

    [42] Tkachenko G, Brasselet E. Optofluidic sorting of material chirality by chiral light[J]. Nature Communications, 5, 3577(2014).

    [43] Shi Y Z, Li Z Y, Liu P Y et al. On-chip optical detection of viruses: a review[J]. Advanced Photonics Research, 2, 2000150(2021).

    [44] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).

    [45] Shi Y Z, Zhao H T, Chin L K et al. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale[J]. Nano Letters, 20, 5193-5200(2020).

    [46] Shi Y Z, Zhao H T, Nguyen K T et al. Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving[J]. ACS Nano, 13, 12070-12080(2019).

    [47] Shi Y Z, Wu Y F, Chin L K et al. Multifunctional virus manipulation with large-scale arrays of all-dielectric resonant nanocavities[J]. Laser & Photonics Reviews, 16, 2100197(2022).

    [48] MacDonald M P, Spalding G C, Dholakia K. Microfluidic sorting in an optical lattice[J]. Nature, 426, 421-424(2003).

    [49] Danesh M, Zadeh M J, Zhang T H et al. Monolayer conveyor for stably trapping and transporting sub-1 nm particles[J]. Laser & Photonics Reviews, 14, 2000030(2020).

    [50] Zheng Y X, Ryan J, Hansen P et al. Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps[J]. Nano Letters, 14, 2971-2976(2014).

    [51] Hansen P, Zheng Y X, Ryan J et al. Nano-optical conveyor belt, part I: theory[J]. Nano Letters, 14, 2965-2970(2014).

    [52] Nan F, Yan Z J. Sorting metal nanoparticles with dynamic and tunable optical driven forces[J]. Nano Letters, 18, 4500-4505(2018).

    [53] Jákl P, Čižmár T, Šerý M et al. Static optical sorting in a laser interference field[J]. Applied Physics Letters, 92, 161110(2008).

    [54] Cong H J, Loo J, Chen J J et al. Target trapping and in situ single-cell genetic marker detection with a focused optical beam[J]. Biosensors and Bioelectronics, 133, 236-242(2019).

    [55] Wang M D, Yin H, Landick R et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 72, 1335-1346(1997).

    [56] Li J, Dao M, Lim C T et al. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte[J]. Biophysical Journal, 88, 3707-3719(2005).

    [57] Bennink M L, Leuba S H, Leno G H et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers[J]. Nature Structural Biology, 8, 606-610(2001).

    [58] Zhang H, Liu K K. Optical tweezers for single cells[J]. Journal of the Royal Society: Interface, 5, 671-690(2008).

    [59] Bustamante C J, Chemla Y R, Liu S X et al. Optical tweezers in single-molecule biophysics[J]. Nature Reviews: Methods Primers, 1, 25(2021).

    [60] Comstock M J, Whitley K D, Jia H F et al. Protein structure. Direct observation of structure-function relationship in a nucleic acid-processing enzyme[J]. Science, 348, 352-354(2015).

    [61] Sudhakar S, Abdosamadi M K, Jachowski T J et al. Germanium nanospheres for ultraresolution picotensiometry of kinesin motors[J]. Science, 371, eabd9944(2021).

    [62] Desai V P, Frank F, Lee A et al. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs[J]. Molecular Cell, 75, 1007-1019(2019).

    [63] Le T T, Yang Y, Tan C et al. Mfd dynamically regulates transcription via a release and catch-up mechanism[J]. Cell, 172, 344-357(2018).

    [64] Roichman Y, Sun B, Roichman Y et al. Optical forces arising from phase gradients[J]. Physical Review Letters, 100, 013602(2008).

    [65] Chin L K, Shi Y Z, Liu A Q. Optical forces in silicon nanophotonics and optomechanical systems: science and applications[J]. Advanced Devices & Instrumentation, 2020, 1964015(2020).

    [66] Chaumet P C, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Optics Letters, 25, 1065-1067(2000).

    [67] O'Neil A T, MacVicar I, Allen L et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Physical Review Letters, 88, 053601(2002).

    [68] Arias-González J R, Nieto-Vesperinas M. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions[J]. Journal of the Optical Society of America A, 20, 1201-1209(2003).

    [69] Jesacher A, Maurer C, Schwaighofer A et al. Full phase and amplitude control of holographic optical tweezers with high efficiency[J]. Optics Express, 16, 4479-4486(2008).

    [70] Jonás A, Zemánek P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis[J]. Electrophoresis, 29, 4813-4851(2008).

    [71] Yan Z J, Sajjan M, Scherer N F. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers[J]. Physical Review Letters, 114, 143901(2015).

    [72] Shi Y Z, Zhu T T, Liu J Q et al. Stable optical lateral forces from inhomogeneities of the spin angular momentum[J]. Science Advances, 8, eabn2291(2022).

    [73] Berry M V. Optical currents[J]. Journal of Optics A: Pure and Applied Optics, 11, 094001(2009).

    [74] Wang S B, Chan C T. Lateral optical force on chiral particles near a surface[J]. Nature Communications, 5, 3307(2014).

    [75] Shi Y Z, Zhu T T, Zhang T H et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation[J]. Light, Science & Applications, 9, 62(2020).

    [76] Zhu T T, Shi Y Z, Ding W Q et al. Extraordinary multipole modes and ultra-enhanced optical lateral force by chirality[J]. Physical Review Letters, 125, 043901(2020).

    [77] Chen H J, Zheng H X, Lu W L et al. Lateral optical force due to the breaking of electric-magnetic symmetry[J]. Physical Review Letters, 125, 073901(2020).

    [78] Sukhov S, Kajorndejnukul V, Naraghi R R et al. Dynamic consequences of optical spin-orbit interaction[J]. Nature Photonics, 9, 809-812(2015).

    [79] Rodríguez-Fortuño F J, Engheta N, Martínez A et al. Lateral forces on circularly polarizable particles near a surface[J]. Nature Communications, 6, 8799(2015).

    [80] Zhang Z B, Min C J, Fu Y N et al. Controllable transport of nanoparticles along waveguides by spin-orbit coupling of light[J]. Optics Express, 29, 6282-6292(2021).

    [81] Zhang Q, Li J Q, Liu X G. Optical lateral forces and torques induced by chiral surface-plasmon-polaritons and their potential applications in recognition and separation of chiral enantiomers[J]. Physical Chemistry Chemical Physics: PCCP, 21, 1308-1314(2019).

    [82] Sukhov S, Dogariu A. Non-conservative optical forces[J]. Reports on Progress in Physics, 80, 112001(2017).

    [83] Quidant R, Girard C. Surface-plasmon-based optical manipulation[J]. Laser & Photonics Reviews, 2, 47-57(2008).

    [84] Albaladejo S, Marqués M I, Laroche M et al. Scattering forces from the curl of the spin angular momentum of a light field[J]. Physical Review Letters, 102, 113602(2009).

    [85] Nieto-Vesperinas M, Xu X H. Reactive helicity and reactive power in nanoscale optics: evanescent waves. Kerker conditions. Optical theorems and reactive dichroism[J]. Physical Review Research, 3, 043080(2021).

    [86] Zhou Y, Xu X H, Zhang Y N et al. Observation of high-order imaginary Poynting momentum optomechanics in structured light[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2209721119(2022).

    [87] Nieto-Vesperinas M, Gomez-Medina R, Saenz J J. Angle-suppressed scattering and optical forces on submicrometer dielectric particles[J]. Journal of the Optical Society of America A, 28, 54-60(2011).

    [88] Nieto-Vesperinas M, Sáenz J J, Gómez-Medina R et al. Optical forces on small magnetodielectric particles[J]. Optics Express, 18, 11428-11443(2010).

    [89] Chaumet P C, Rahmani A. Electromagnetic force and torque on magnetic and negative-index scatterers[J]. Optics Express, 17, 2224-2234(2009).

    [90] Bekshaev A Y. Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows[J]. Journal of Optics, 15, 044004(2013).

    [91] Chen H J, Liang C H, Liu S Y et al. Chirality sorting using two-wave-interference-induced lateral optical force[J]. Physical Review A, 93, 053833(2016).

    [92] Cipparrone G, Ricardez-Vargas I, Pagliusi P et al. Polarization gradient: exploring an original route for optical trapping and manipulation[J]. Optics Express, 18, 6008-6013(2010).

    [93] Bliokh K Y, Nori F. Transverse and longitudinal angular momenta of light[J]. Physics Reports, 592, 1-38(2015).

    [94] García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S et al. Strong magnetic response of submicron silicon particles in the infrared[J]. Optics Express, 19, 4815-4826(2011).

    [95] Yevick A, Evans D J, Grier D G. Photokinetic analysis of the forces and torques exerted by optical tweezers carrying angular momentum[J]. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 375, 20150432(2017).

    [96] Svak V, Brzobohatý O, Šiler M et al. Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap[J]. Nature Communications, 9, 5453(2018).

    [97] Zhang T H, Mahdy M R C, Liu Y M et al. All-optical chirality-sensitive sorting via reversible lateral forces in interference fields[J]. ACS Nano, 11, 4292-4300(2017).

    [98] Ginis V, Liu L L, She A L et al. Using the Belinfante momentum to retrieve the polarization state of light inside waveguides[J]. Scientific Reports, 9, 14879(2019).

    [99] Antognozzi M, Bermingham C R, Harniman R L et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever[J]. Nature Physics, 12, 731-735(2016).

    [100] Lu J S, Ginis V, Qiu C W et al. Polarization-dependent forces and torques at resonance in a microfiber-microcavity system[J]. Physical Review Letters, 130, 183601(2023).

    [101] Liu L L, Di Donato A, Ginis V et al. Three-dimensional measurement of the helicity-dependent forces on a Mie particle[J]. Physical Review Letters, 120, 223901(2018).

    [102] Zhou Y, Zhang Y N, Xu X H et al. Optical forces on multipoles induced by the Belinfante spin momentum[J]. Laser & Photonics Reviews, 17, 2300245(2023).

    [103] Stilgoe A B, Nieminen T A, Rubinsztein-Dunlop H. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles[J]. Nature Photonics, 16, 346-351(2022).

    [104] Yu X N, Li Y X, Xu B J et al. Anomalous lateral optical force as a manifestation of the optical transverse spin[J]. Laser & Photonics Reviews, 17, 2300212(2023).

    [105] Solomon M L, Saleh A A E, Poulikakos L V et al. Nanophotonic platforms for chiral sensing and separation[J]. Accounts of Chemical Research, 53, 588-598(2020).

    [106] Mun J, Kim M, Yang Y et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena[J]. Light, Science & Applications, 9, 139(2020).

    [107] Zhou L M, Shi Y Z, Zhu X Y et al. Recent progress on optical micro/nanomanipulations: structured forces, structured particles, and synergetic applications[J]. ACS Nano, 16, 13264-13278(2022).

    [108] Yokota M, He S, Takenaka T. Scattering of a Hermite-Gaussian beam field by a chiral sphere[J]. Journal of the Optical Society of America A, 18, 1681-1689(2001).

    [109] Ding K, Ng J, Zhou L et al. Realization of optical pulling forces using chirality[J]. Physical Review A, 89, 063825(2014).

    [110] Shi H S, Zheng H X, Chen H J et al. Optical binding and lateral forces on chiral particles in linearly polarized plane waves[J]. Physical Review A, 101, 043808(2020).

    [111] Tkachenko G, Brasselet E. Helicity-dependent three-dimensional optical trapping of chiral microparticles[J]. Nature Communications, 5, 4491(2014).

    [112] Cipparrone G, Mazzulla A, Pane A et al. Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device[J]. Advanced Materials, 23, 5773-5778(2011).

    [113] Zheng H X, Chen H J, Ng J et al. Optical gradient force in the absence of light intensity gradient[J]. Physical Review B, 103, 035103(2021).

    [114] Chen H J, Wang N, Lu W L et al. Tailoring azimuthal optical force on lossy chiral particles in Bessel beams[J]. Physical Review A, 90, 043850(2014).

    [115] Yamanishi J, Ahn H Y, Yamane H et al. Optical gradient force on chiral particles[J]. Science Advances, 8, eabq2604(2022).

    [116] Bliokh K Y, Niv A, Kleiner V et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2, 748-753(2008).

    [117] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).

    [118] Ling X H, Zhou X X, Huang K et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics, 80, 066401(2017).

    [119] Aiello A, Lindlein N, Marquardt C et al. Transverse angular momentum and geometric spin Hall effect of light[J]. Physical Review Letters, 103, 100401(2009).

    [120] Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light[J]. Science, 348, 1448-1451(2015).

    [121] Kalhor F, Thundat T, Jacob Z. Universal spin-momentum locked optical forces[J]. Applied Physics Letters, 108, 061102(2016).

    [122] Van Mechelen T, Jacob Z. Universal spin-momentum locking of evanescent waves[J]. Optica, 3, 118-126(2016).

    [123] Shi P, Du L P, Li C C et al. Transverse spin dynamics in structured electromagnetic guided waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2018816118(2021).

    [124] Li Y, Rui G H, Zhou S C et al. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin[J]. Optics Express, 28, 27808-27822(2020).

    [125] Alizadeh M H, Reinhard B M. Dominant chiral optical forces in the vicinity of optical nanofibers[J]. Optics Letters, 41, 4735-4738(2016).

    [126] Alizadeh M H, Reinhard B M. Emergence of transverse spin in optical modes of semiconductor nanowires[J]. Optics Express, 24, 8471-8479(2016).

    [127] Chen H J, Jiang Y K, Wang N et al. Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves[J]. Optics Letters, 40, 5530-5533(2015).

    [128] Liu X G, Li J Q, Zhang Q et al. Separation of chiral enantiomers by optical force and torque induced by tightly focused vector polarized hollow beams[J]. Physical Chemistry Chemical Physics: PCCP, 21, 15339-15345(2019).

    [129] Li M M, Yan S H, Zhang Y N et al. Optical sorting of small chiral particles by tightly focused vector beams[J]. Physical Review A, 99, 033825(2019).

    [130] Li M M, Yan S H, Zhang Y N et al. Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum[J]. Nanoscale Advances, 3, 6897-6902(2021).

    [131] Li M M, Yan S H, Zhang Y N et al. Orbital angular momentum in optical manipulations[J]. Journal of Optics, 24, 114001(2022).

    [132] Cameron R P, Barnett S M, Yao A M. Discriminatory optical force for chiral molecules[J]. New Journal of Physics, 16, 013020(2014).

    [133] Yesharim O, Karnieli A, Jackel S et al. Observation of the all-optical Stern-Gerlach effect in nonlinear optics[J]. Nature Photonics, 16, 582-587(2022).

    [134] Kravets N, Aleksanyan A, Brasselet E. Chiral optical stern-gerlach Newtonian experiment[J]. Physical Review Letters, 122, 024301(2019).

    [135] Canaguier-Durand A, Genet C. Plasmonic lateral forces on chiral spheres[J]. Journal of Optics, 18, 015007(2016).

    [136] Mu X J, Hu L, Cheng Y Q et al. Chiral surface plasmon-enhanced chiral spectroscopy: principles and applications[J]. Nanoscale, 13, 581-601(2021).

    [137] Cao T, Qiu Y M. Lateral sorting of chiral nanoparticles using Fano-enhanced chiral force in visible region[J]. Nanoscale, 10, 566-574(2018).

    [138] Alizadeh M H, Reinhard B M. Plasmonically enhanced chiral optical fields and forces in achiral split ring resonators[J]. ACS Photonics, 2, 361-368(2015).

    [139] Zhao Y, Saleh A A E, van de Haar M A et al. Nanoscopic control and quantification of enantioselective optical forces[J]. Nature Nanotechnology, 12, 1055-1059(2017).

    [140] Ali R, Pinheiro F A, Dutra R S et al. Enantioselective manipulation of single chiral nanoparticles using optical tweezers[J]. Nanoscale, 12, 5031-5037(2020).

    [141] Fang L, Wang J. Optical trapping separation of chiral nanoparticles by subwavelength slot waveguides[J]. Physical Review Letters, 127, 233902(2021).

    [142] Andrén D, Baranov D G, Jones S et al. Microscopic metavehicles powered and steered by embedded optical metasurfaces[J]. Nature Nanotechnology, 16, 970-974(2021).

    [143] Tong L M, Miljković V D, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces[J]. Nano Letters, 10, 268-273(2010).

    [144] Xu X H, Cheng C, Zhang Y et al. Scattering and extinction torques: how plasmon resonances affect the orientation behavior of a nanorod in linearly polarized light[J]. The Journal of Physical Chemistry Letters, 7, 314-319(2016).

    [145] Padgett M, Bowman R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).

    [146] Shen Z, Cheng Y, Deng H C et al. Analysis of trapping force of beak-shaped optical tweezers with annular core fibers for particles[J]. Acta Optica Sinica, 41, 1808001(2021).

    [147] Nieto-Vesperinas M, Xu X H. The complex Maxwell stress tensor theorem: the imaginary stress tensor and the reactive strength of orbital momentum. A novel scenery underlying electromagnetic optical forces[J]. Light, Science & Applications, 11, 297(2022).

    [148] Zeng J W, Wang J. Interrogating imaginary optical force by the complex Maxwell stress tensor theorem[J]. Light, Science & Applications, 12, 20(2023).

    [149] Zhao Y Q, Shapiro D, McGloin D et al. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam[J]. Optics Express, 17, 23316-23322(2009).

    [150] Bliokh K Y, Ostrovskaya E A, Alonso M A et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 19, 26132-26149(2011).

    [151] Kostina N A, Kislov D A, Ivinskaya A N et al. Nano-scale tunable optical binding mediated by hyperbolic metamaterials[J]. ACS Photonics, 7, 425-433(2019).

    [152] Paul N K, Correas-Serrano D, Gomez-Diaz J S. Giant lateral optical forces on Rayleigh particles near hyperbolic and extremely anisotropic metasurfaces[J]. Physical Review B, 99, 121408(2019).

    [153] Ivinskaya A, Petrov M I, Bogdanov A A et al. Plasmon-assisted optical trapping and anti-trapping[J]. Light, Science & Applications, 6, e16258(2017).

    [154] Huang S Y, Zhang G L, Wang Q et al. Spin-to-orbital angular momentum conversion via light intensity gradient[J]. Optica, 8, 1231-1236(2021).

    [155] Zhang H, Gu M, Jiang X D et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 12, 457(2021).

    [156] Zhu H H, Zou J, Zhang H et al. Space-efficient optical computing with an integrated chip diffractive neural network[J]. Nature Communications, 13, 1044(2022).

    [157] Lin L H, Peng X L, Mao Z M et al. Bubble-pen lithography[J]. Nano Letters, 16, 701-708(2016).

    [158] Setoura K, Ito S, Miyasaka H. Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle[J]. Nanoscale, 9, 719-730(2017).

    [159] Kollipara P S, Mahendra R, Li J G et al. Bubble-pen lithography: fundamentals and applications[J]. Aggregate, 3, e189(2022).

    [160] Lin L H, Hill E H, Peng X L et al. Optothermal manipulations of colloidal particles and living cells[J]. Accounts of Chemical Research, 51, 1465-1474(2018).

    [161] Li J G, Zheng Y B. Optothermally assembled nanostructures[J]. Accounts of Materials Research, 2, 352-363(2021).

    [162] Ghosh S, Ranjan A D, Das S et al. Directed self-assembly driven mesoscale lithography using laser-induced and manipulated microbubbles: complex architectures and diverse applications[J]. Nano Letters, 21, 10-25(2021).

    [163] Kim Y, Ding H R, Zheng Y B. Enhancing surface capture and sensing of proteins with low-power optothermal bubbles in a biphasic liquid[J]. Nano Letters, 20, 7020-7027(2020).

    [164] Monisha K, Suresh K, Bankapur A et al. Optical printing of plasmonic nanoparticles for SERS studies of analytes and thermophoretically trapped biological cell[J]. Sensors and Actuators B: Chemical, 377, 133047(2023).

    [165] An S Z, Ranaweera R, Luo L. Harnessing bubble behaviors for developing new analytical strategies[J]. Analyst, 145, 7782-7795(2020).

    [166] Wang H, Xu B B, Zhang Y L et al. Light-driven magnetic encoding for hybrid magnetic micromachines[J]. Nano Letters, 21, 1628-1635(2021).

    [167] Zhou Y T, Dai L G, Jiao N D. Review of bubble applications in microrobotics: propulsion, manipulation, and assembly[J]. Micromachines, 13, 1068(2022).

    [168] Karim F, Vasquez E S, Sun Y et al. Optothermal microbubble assisted manufacturing of nanogap-rich structures for active chemical sensing[J]. Nanoscale, 11, 20589-20597(2019).

    [169] Piazza R. Thermophoresis: moving particles with thermal gradients[J]. Soft Matter, 4, 1740-1744(2008).

    [170] Gargiulo J, Brick T, Violi I L et al. Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing[J]. Nano Letters, 17, 5747-5755(2017).

    [171] Chen J J, Zeng Y J, Zhou J et al. Optothermophoretic flipping method for biomolecule interaction enhancement[J]. Biosensors and Bioelectronics, 204, 114084(2022).

    [172] Duhr S, Braun D. Why molecules move along a temperature gradient[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 19678-19682(2006).

    [173] Schermer R T, Olson C C, Coleman J P et al. Laser-induced thermophoresis of individual particles in a viscous liquid[J]. Optics Express, 19, 10571-10586(2011).

    [174] Saxton R L, Ranz W E. Thermal force on an aerosol particle in a temperature gradient[J]. Journal of Applied Physics, 23, 917-923(1952).

    [175] Bregulla A P, Würger A, Günther K et al. Thermo-osmotic flow in thin films[J]. Physical Review Letters, 116, 188303(2016).

    [176] Wang X, Liu M C, Jing D W et al. Net unidirectional fluid transport in locally heated nanochannel by thermo-osmosis[J]. Nano Letters, 20, 8965-8971(2020).

    [177] Zhou J X, Dai X Q, Peng Y H et al. Low-temperature optothermal nanotweezers[J]. Nano Research, 16, 7710-7715(2023).

    [178] Roxworthy B J, Bhuiya A M, Vanka S P et al. Understanding and controlling plasmon-induced convection[J]. Nature Communications, 5, 3173(2014).

    [179] Park J, Lee S, Lee H et al. Colloidal multiscale assembly via photothermally driven convective flow for sensitive in-solution plasmonic detections[J]. Small, 18, e2201075(2022).

    [180] Jin C M, Lee W, Kim D et al. Photothermal convection lithography for rapid and direct assembly of colloidal plasmonic nanoparticles on generic substrates[J]. Small, 14, e1803055(2018).

    [181] Huang J S, Yang Y T. Origin and future of plasmonic optical tweezers[J]. Nanomaterials, 5, 1048-1065(2015).

    [182] Ma C P, Yu P, Wang W H et al. Chiral optofluidics with a plasmonic metasurface using the photothermal effect[J]. ACS Nano, 15, 16357-16367(2021).

    [183] Wang K, Crozier K B. Plasmonic trapping with a gold nanopillar[J]. Chemphyschem, 13, 2639-2648(2012).

    [184] Singh P, Joseph D D. Fluid dynamics of floating particles[J]. Journal of Fluid Mechanics, 530, 31-80(2005).

    [185] Stoev I D, Seelbinder B, Erben E et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap[J]. eLight, 1, 7(2021).

    [186] Shi Y Z, Zhu T T, Nguyen K T et al. Optofluidic microengine in a dynamic flow environment via self-induced back-action[J]. ACS Photonics, 7, 1500-1507(2020).

    [187] Lü H L, Chen X Y, Wang X Y et al. A novel study on a micromixer with Cantor fractal obstacle through grey relational analysis[J]. International Journal of Heat and Mass Transfer, 183, 122159(2022).

    [188] Ndukaife J C, Kildishev A V, Nnanna A G A et al. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer[J]. Nature Nanotechnology, 11, 53-59(2016).

    [189] Chen X Y, Lv H L. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning[J]. NPG Asia Materials, 14, 69(2022).

    [190] Peng X L, Chen Z H, Kollipara P S et al. Opto-thermoelectric microswimmers[J]. Light, Science & Applications, 9, 141(2020).

    [191] Lin L H, Wang M S, Peng X L et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 12, 195-201(2018).

    [192] Lin L H, Zhang J L, Peng X L et al. Opto-thermophoretic assembly of colloidal matter[J]. Science Advances, 3, e1700458(2017).

    [193] Wang M S, Hu G W, Chand S et al. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges[J]. eLight, 2, 12(2022).

    [194] Qin H Y, Shi Y Z, Su Z P et al. Exploiting extraordinary topological optical forces at bound states in the continuum[J]. Science Advances, 8, eade7556(2022).

    [195] Silveirinha M G, Gangaraj S A H, Hanson G W et al. Fluctuation-induced forces on an atom near a photonic topological material[J]. Physical Review A, 97, 022509(2018).

    [196] Gangaraj S A H, Hanson G W, Antezza M et al. Spontaneous lateral atomic recoil force close to a photonic topological material[J]. Physical Review B, 97, 201108(2018).

    [197] Paul N K, Gomez-Diaz J S. Lateral recoil optical forces on nanoparticles near nonreciprocal surfaces[J]. Physical Review B, 107, 035417(2023).

    [198] Gangaraj S A H, Monticone F. Coupled topological surface modes in gyrotropic structures: Greens function analysis[J]. IEEE Antennas and Wireless Propagation Letters, 17, 1993-1997(2018).

    [199] Gangaraj S A H, Hanson G W. Topologically protected unidirectional surface states in biased ferrites: duality and application to directional couplers[J]. IEEE Antennas and Wireless Propagation Letters, 16, 449-452(2017).

    [200] Gangaraj S A H, Monticone F. Topologically-protected one-way leaky waves in nonreciprocal plasmonic structures[J]. Journal of Physics: Condensed Matter, 30, 104002(2018).

    [201] Gangaraj S A H, Hanson G W, Silveirinha M G et al. Unidirectional and diffractionless surface plasmon polaritons on three-dimensional nonreciprocal plasmonic platforms[J]. Physical Review B, 99, 245414(2019).

    [202] Kingsley-Smith J J, Picardi M F, Wei L et al. Optical forces from near-field directionalities in planar structures[J]. Physical Review B, 99, 235410(2019).

    [203] Li Z, Zhang S, Tong L et al. Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force[J]. ACS Nano, 8, 701-708(2014).

    [204] Cao T, Bao J X, Mao L B. Switching of giant lateral force on sub-10 nm particle using phase-change nanoantenna[J]. Advanced Theory and Simulations, 1, 1700027(2018).

    [205] Cipparrone G, Hernandez R J, Pagliusi P et al. Magnus force effect in optical manipulation[J]. Physical Review A, 84, 015802(2011).

    [206] Huggins E R. Exact Magnus-force formula for three-dimensional fluid-core vortices[J]. Physical Review A, 1, 327-331(1970).

    [207] Weidman P D, Herczynski A. On the inverse Magnus effect in free molecular flow[J]. Physics of Fluids, 16, L9-L12(2004).

    [208] Saffman P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 22, 385-400(1965).

    [209] Tian F, Cai L L, Chang J Q et al. Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics[J]. Lab on a Chip, 18, 3436-3445(2018).

    [210] Mema I, Mahajan V V, Fitzgerald B W et al. Effect of lift force and hydrodynamic torque on fluidisation of non-spherical particles[J]. Chemical Engineering Science, 195, 642-656(2019).

    [211] Guzniczak E, Otto O, Whyte G et al. Deformability-induced lift force in spiral microchannels for cell separation[J]. Lab on a Chip, 20, 614-625(2020).

    [212] Geislinger T M, Franke T. Hydrodynamic lift of vesicles and red blood cells in flow: from Fåhræus & Lindqvist to microfluidic cell sorting[J]. Advances in Colloid and Interface Science, 208, 161-176(2014).

    [213] Hejazian M, Li W H, Nguyen N T. Lab on a chip for continuous-flow magnetic cell separation[J]. Lab on a Chip, 15, 959-970(2015).

    [214] Kuntaegowdanahalli S S, Bhagat A A S, Kumar G et al. Inertial microfluidics for continuous particle separation in spiral microchannels[J]. Lab on a Chip, 9, 2973-2980(2009).

    [215] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets[J]. Nature Photonics, 2, 675-678(2008).

    [216] Kuo H Y, Vyas S, Chu C H et al. Cubic-phase metasurface for three-dimensional optical manipulation[J]. Nanomaterials, 11, 1730(2021).

    [217] Zheng Z, Zhang B F, Chen H et al. Optical trapping with focused Airy beams[J]. Applied Optics, 50, 43-49(2011).

    [218] MacDonald M P, Paterson L, Volke-Sepulveda K et al. Creation and manipulation of three-dimensional optically trapped structures[J]. Science, 296, 1101-1103(2002).

    [219] Donato M G, Brzobohatý O, Simpson S H et al. Optical trapping, optical binding, and rotational dynamics of silicon nanowires in counter-propagating beams[J]. Nano Letters, 19, 342-352(2019).

    [220] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [221] Nedev S, Carretero-Palacios S, Kühler P et al. An optically controlled microscale elevator using plasmonic Janus particles[J]. ACS Photonics, 2, 491-496(2015).

    [222] Liu J, Guo H L, Li Z Y. Self-propelled round-trip motion of Janus particles in static line optical tweezers[J]. Nanoscale, 8, 19894-19900(2016).

    [223] Liu Y Y, Edmond K V, Curran A et al. Core-shell particles for simultaneous 3D imaging and optical tweezing in dense colloidal materials[J]. Advanced Materials, 28, 8001-8006(2016).

    [224] Rodríguez-Sevilla P, Prorok K, Bednarkiewicz A et al. Optical forces at the nanoscale: size and electrostatic effects[J]. Nano Letters, 18, 602-609(2018).

    [225] Ding L, Shan X C, Wang D J et al. Lanthanide ion resonance-driven Rayleigh scattering of nanoparticles for dual-modality interferometric scattering microscopy[J]. Advanced Science, 9, e2203354(2022).

    [226] Lee Y E, Fung K H, Jin D F et al. Optical torque from enhanced scattering by multipolar plasmonic resonance[J]. Nanophotonics, 3, 343-350(2014).

    [227] Shi Y Z, Zhou L M, Liu A Q et al. Superhybrid mode-enhanced optical torques on Mie-resonant particles[J]. Nano Letters, 22, 1769-1777(2022).

    [228] Shi Y Z, Zhu T T, Liu A Q et al. Inverse optical torques on dielectric nanoparticles in elliptically polarized light waves[J]. Physical Review Letters, 129, 053902(2022).

    [229] Fujiwara H, Yamauchi K, Wada T et al. Optical selection and sorting of nanoparticles according to quantum mechanical properties[J]. Science Advances, 7, eabd9551(2021).

    [230] Balthasar Mueller J P, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [231] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [232] Lin D M, Fan P Y, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [233] Ren H R, Briere G, Fang X Y et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 10, 2986(2019).

    [234] Song Q H, Odeh M, Zúñiga-Pérez J et al. Plasmonic topological metasurface by encircling an exceptional point[J]. Science, 373, 1133-1137(2021).

    [235] Deng Z L, Li G X. Metasurface optical holography[J]. Materials Today Physics, 3, 16-32(2017).

    [236] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [237] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [238] Li L L, Zhao H T, Liu C et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2, 7(2022).

    [239] Lee D, So S, Hu G W et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials[J]. eLight, 2, 1(2022).

    [240] Wu X F, Ehehalt R, Razinskas G et al. Light-driven microdrones[J]. Nature Nanotechnology, 17, 477-484(2022).

    [241] Li T Y, Kingsley-Smith J J, Hu Y H et al. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles[J]. Optics Letters, 48, 255-258(2023).

    [242] Liu Y R, Ding H R, Li J G et al. Light-driven single-cell rotational adhesion frequency assay[J]. eLight, 2, 13(2022).

    [243] Xin H B, Li Y C, Liu Y C et al. Optical forces: from fundamental to biological applications[J]. Advanced Materials, 32, 2001994(2020).

    [244] Wang X F, Liu X, Dong T J et al. Current-modulated single fiber optical tweezers for controlled particle capture and axial reciprocating motion[J]. Acta Optica Sinica, 43, 1406003(2023).

    [245] Bégin J L, Jain A, Parks A et al. Nonlinear helical dichroism in chiral and achiral molecules[J]. Nature Photonics, 17, 82-88(2023).

    [246] Pu L. Enantioselective fluorescent sensors: a tale of BINOL[J]. Accounts of Chemical Research, 45, 150-163(2012).

    [247] Genet C. Chiral light-chiral matter interactions: an optical force perspective[J]. ACS Photonics, 9, 319-332(2022).

    [248] Milonni P W, Boyd R W. Momentum of light in a dielectric medium[J]. Advances in Optics and Photonics, 2, 519-553(2010).

    [249] Kajorndejnukul V, Ding W Q, Sukhov S et al. Linear momentum increase and negative optical forces at dielectric interface[J]. Nature Photonics, 7, 787-790(2013).

    [250] Qiu C W, Ding W Q, Mahdy M R C et al. Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams[J]. Light: Science & Applications, 4, e278(2015).

    [251] Pfeifer R N C, Nieminen T A, Heckenberg N R et al. Colloquium: momentum of an electromagnetic wave in dielectric media[J]. Reviews of Modern Physics, 79, 1197-1216(2007).

    [252] Nelson D F. Momentum, pseudomomentum, and wave momentum: toward resolving the Minkowski-Abraham controversy[J]. Physical Review A, 44, 3985-3996(1991).

    [253] Ashkin A. Applications of laser radiation pressure[J]. Science, 210, 1081-1088(1980).

    [254] Baxter C, Loudon R. Radiation pressure and the photon momentum in dielectrics[J]. Journal of Modern Optics, 57, 830-842(2010).

    [255] Letokhov V S, Minogin V G. Laser radiation pressure on free atoms[J]. Physics Reports, 73, 1-65(1981).

    [256] Gieseler J, Gomez-Solano J R, Magazzù A et al. Optical tweezers: from calibration to applications: a tutorial[J]. Advances in Optics and Photonics, 13, 74-241(2021).

    [257] Ding W Q, Zhu T T, Zhou L M et al. Photonic tractor beams: a review[J]. Advanced Photonics, 1, 024001(2019).

    [258] Nan F, Rodríguez-Fortuño F J, Yan S H et al. Creating tunable lateral optical forces through multipolar interplay in single nanowires[J]. Nature Communications, 14, 6361(2023).

    [259] Zhu C J, Song W Z, Qu M et al. Thermal analysis and trapping properties of silicon-based optical nanotweezer structures[J]. Acta Optica Sinica, 39, 0324002(2019).

    [260] Zhong Y L, Peng Y H, Chen J J et al. Optical temperature field-driven tweezers: principles and biomedical applications[J]. Acta Optica Sinica, 43, 1400001(2023).

    [261] Rong S, Liu H S, Zhong Y et al. Enhancement of Raman spectra based on optical trapping of gold nanocubes[J]. Acta Optica Sinica, 41, 1730003(2021).

    [262] Liu T J, Guo C, Li W et al. Thermal photonics with broken symmetries[J]. eLight, 2, 25(2022).

    [263] Bliokh K Y, Nori F. Transverse spin of a surface polariton[J]. Physical Review A, 85, 061801(2012).

    [264] Richards B, Wolf E, Gabor D. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 253, 358-379(1959).

    [265] Eismann J S, Banzer P, Neugebauer M. Spin-orbit coupling affecting the evolution of transverse spin[J]. Physical Review Research, 1, 033143(2019).

    [266] Petersen J, Volz J, Rauschenbeutel A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light[J]. Science, 346, 67-71(2014).

    [267] Junge C, O'Shea D, Volz J et al. Strong coupling between single atoms and nontransversal photons[J]. Physical Review Letters, 110, 213604(2013).

    [268] Zhang Q, Xie Z W, Du L P et al. Bloch-type photonic skyrmions in optical chiral multilayers[J]. Physical Review Research, 3, 023109(2021).

    [269] Lei X R, Yang A P, Shi P et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies[J]. Physical Review Letters, 127, 237403(2021).

    [270] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).

    [271] Lu C F, Wang B, Fang X et al. Nanoparticle deep-subwavelength dynamics empowered by optical meron-antimeron topology[J]. Nano Letters, 24, 104-113(2024).

    [272] Shi Y Z, Xu X H, Nieto-Vesperinas M et al. Advances in light transverse momenta and optical lateral forces[J]. Advances in Optics and Photonics, 15, 835-906(2023).

    [273] Eismann J S, Nicholls L H, Roth D J et al. Transverse spinning of unpolarized light[J]. Nature Photonics, 15, 156-161(2021).

    [274] Neugebauer M, Eismann J S, Bauer T et al. Magnetic and electric transverse spin density of spatially confined light[J]. Physical Review X, 8, 021042(2018).

    [275] Neugebauer M, Bauer T, Aiello A et al. Measuring the transverse spin density of light[J]. Physical Review Letters, 114, 063901(2015).

    [276] Shi P, Du L P, Yuan X C. Spin photonics: from transverse spin to photonic skyrmions[J]. Nanophotonics, 10, 46(2021).

    [277] Li C C, Shi P, Du L P et al. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field[J]. Nanoscale, 12, 13674-13679(2020).

    [278] Rodríguez-Herrera O G, Lara D, Bliokh K Y et al. Optical nanoprobing via spin-orbit interaction of light[J]. Physical Review Letters, 104, 253601(2010).

    [279] Bauer T, Orlov S, Peschel U et al. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams[J]. Nature Photonics, 8, 23-27(2014).

    [280] Tao Y, Zhong W, Wu X Y et al. Optical torques: fundamentals and their applications[J]. Acta Optica Sinica, 43, 1623012(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yuzhi Shi, Chengxing Lai, Weicheng Yi, Haiyang Huang, Chao Feng, Tao He, Aiqun Liu, Weicheng Qiu, Zhanshan Wang, Xinbin Cheng. Recent Progress in Optical Lateral Forces (Invited)[J]. Acta Optica Sinica, 2024, 44(7): 0700001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Nov. 3, 2023

    Accepted: Dec. 21, 2023

    Published Online: Apr. 1, 2024

    The Author Email: Shi Yuzhi (yzshi@tongji.edu.cn), Cheng Xinbin (chengxb@tongji.edu.cn)

    DOI:10.3788/AOS231739

    Topics