Chinese Optics, Volume. 15, Issue 5, 1055(2022)
Real-time semantic segmentation of microvascular decompression images based on encoder-decoder structure
[1] BENNETTO L, PATEL N K, FULLER G. Trigeminal neuralgia and its management[J]. BMJ, 334, 201-205(2007).
[2] KIZILTAN M E, GUNDUZ A. Reorganization of sensory input at brainstem in hemifacial spasm and postparalytic facial syndrome[J]. Neurological Sciences, 39, 313-319(2018).
[3] NAZIR A, CHEEMA M N, SHENG B, et al. OFF-eNET: an optimally fused fully end-to-end network for automatic dense volumetric 3D intracranial blood vessels segmentation[J]. IEEE Transactions on Image Processing, 29, 7192-7202(2020).
[4] WU H Y, ZHENG B. Analysis on imaging manifestations and diagnostic contrast of cerebral arteriovenous malformations in CTA and DSA[J]. Chinese Journal of CT and MRI, 19, 36-37,52(2021).
[5] PATEL T R, PALIWAL N, JAISWAL P, et al. Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic[J]. Proceedings of SPIE, 11314, 113142W(2020).
[6] WANG H. Comparison of consistency of MRA and 3D-ASL cerebral perfusion imaging in the diagnosisof ischemic cerebrovascular diseases[J]. Practical Journal of Clinical Medicine, 17, 36-39(2020).
[7] XU B J. Diagnostic value of computed tomography combined with nuclear magnetic resonance angiography in cerebrovascular diseases[J]. Chinese Journal of Clinical Rational Drug Use, 14, 177-178(2021).
[8] [8] ZHANG H, XIA L K, SONG R, et al. . Cerebrovular segmentation in mra via reverse edge attention wk[C]. Proceedings of the 23rd International Conference on Medical Image Computing ComputerAssisted Intervention, Springer, 2020: 6675.
[9] GUO X Y, XIAO R X, LU Y Y, et al. Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function[J]. Computer Methods and Programs in Biomedicine, 202, 105998(2021).
[10] HILBERT A, MADAI V I, AKAY E M, et al. BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease[J]. Frontiers in Artificial Intelligence, 3, 552258(2020).
[11] CHEN X, SONG ZH Y, ZHOU M Q, . An improved non-local mean filter algorithm facing the cerebrovascular segmentation[J]. Chinese Optics, 7, 572-580(2014).
[12] WANG R, LI CH, WANG J, et al. Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images[J]. Journal of Neuroscience Methods, 241, 30-36(2015).
[13] [13] BHUIYAN A, NATH B, CHUA J. An adaptive region growing segmentation f blood vessel detection from retinal images[C]. Visapp: Second International Conference on Computer Vision They Applications, 2007: 404409.
[14] WANG X C, ZHANG M X, WU ZH K, . Level coarse brain vessel segmentation based on global LBF model[J]. Optics and Precision Engineering, 21, 3283-3297(2013).
[15] WANG J X, ZHAO SH F, LIU Z F, et al. An active contour model based on adaptive threshold for extraction of cerebral vascular structures[J]. Computational and Mathematical Methods in Medicine, 2016, 6472397(2016).
[16] CHEN X D, AI D H, ZHANG J CH, . Gabor filter fusion network for pavement crack detection[J]. Chinese Optics, 13, 1293-1301(2020).
[17] WANG CH ZH, AN J SH, JIANG X J, . Region proposal optimization algorithm based on convolutional neural networks[J]. Chinese Optics, 12, 1348-1361(2019).
[18] [18] LONG J, SHELHAMER E, DARRELL T. Fully convolutional wks f semantic segmentation[C]. Proceedings of 2015 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2015: 34313440.
[19] [19] SHVETS A A, IGLOVIKOV V I, RAKHLIN A, et al. . Angiodysplasia detection localization using deep convolutional neural wks[C]. Proceedings of 2018 17th IEEE International Conference on Machine Learning Applications (ICMLA), IEEE, 2018: 612617.
[20] ZHANG M, ZHANG CH, WU X, et al. A neural network approach to segment brain blood vessels in digital subtraction angiography[J]. Computer Methods Programs in Biomedicine, 185, 105159(2020).
[21] XIA L K, XIE Y X, WANG Q W, et al. A nested parallel multiscale convolution for cerebrovascular segmentation[J]. Medical Physics, 48, 7971-7983(2021).
[22] MENG C, SUN K, GUAN SH Y, et al. Multiscale dense convolutional neural network for DSA cerebrovascular segmentation[J]. Neurocomputing, 373, 123-134(2020).
[23] [23] HUANG G, LIU ZH, VAN DER MAATEN L, et al. . Densely connected convolutional wks[C]. Proceedings of 2017 IEEE Conference on Computer Vision Pattern Recognition, IEEE, 2017: 22612269.
[24] ALVAREZ J, PETERSSON L. DecomposeMe: simplifying convnets for end-to-end learning[J]. arXiv preprint arXiv:, 05426, 2016(1606).
[25] [25] HE K M, ZHANG X Y, REN SH Q, et al. . Delving deep into rectifiers: Surpassing humanlevel perfmance on image classification[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, IEEE, 2015: 10261034.
[26] [26] CODELLA N C F, GUTMAN D, CELEBI M E, et al. . Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collabation (ISIC)[C]. Proceedings of the 15th International Symposium on Biomedical Imaging, IEEE, 2016.
[27] [27] MENDONA T, FERREIRA P M, MARQUES J S, et al. . PH2A dermoscopic image database f research benchmarking[C]. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), IEEE, 2013: 54375440.
[28] WU T Y, TANG SH, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 30, 1169-1179(2020).
[29] [29] LO S Y, HANG H M, CHAN SH W, et al. . Efficient dense modules of asymmetric convolution f realtime semantic segmentation[C]. Proceedings of the ACM Multimedia Asia, ACM, 2019: 1.
[30] POUDEL R P K, BONDE U, LIWICKI S, et al. ContextNet: exploring context and detail for semantic segmentation in real-time[J]. arXiv preprint arXiv:, 4, 2018(0455).
[31] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:, 05587, 2017(1706).
[32] GU R, WANG G T, SONG T, et al. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 40, 699-711(2021).
Get Citation
Copy Citation Text
Rui-feng BAI, Shan JIANG, Hai-jiang SUN, Xin-rui LIU. Real-time semantic segmentation of microvascular decompression images based on encoder-decoder structure[J]. Chinese Optics, 2022, 15(5): 1055
Category: Original Article
Received: Jun. 10, 2022
Accepted: --
Published Online: Sep. 29, 2022
The Author Email: