Chinese Optics, Volume. 15, Issue 5, 1055(2022)

Real-time semantic segmentation of microvascular decompression images based on encoder-decoder structure

Rui-feng BAI1,2, Shan JIANG1、*, Hai-jiang SUN1, and Xin-rui LIU1,3
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China
  • show less
    Figures & Tables(18)
    Architecture of U-MVDNet
    (a) ResNet bottleneck design and (b) LABM
    Flow chart of feature fusion module
    Loss curves
    The visual comparison results of different methods on MVD validate set
    The visual comparison results of different methods on ISIC 2016 + PH2 test set
    • Table 1. Architecture details of proposed U-MVDNet

      View table
      View in Article

      Table 1. Architecture details of proposed U-MVDNet

      LayerOperatorModeChannelOutput size
      1$3 \times 3$ Conv stride 232$256 \times 256$
      2$3 \times 3$ Conv stride 132$256 \times 256$
      3$3 \times 3$ Conv stride 132$256 \times 256$
      4-5$n \times $LABM dilated 232$256 \times 256$
      6$3 \times 3$ Conv stride 264$128 \times 128$
      7-8$m \times $LABM dilated 464$128 \times 128$
      9$3 \times 3$ Conv stride 2128$64 \times 64$
      10-12$l \times $LABM dilated 8128$64 \times 64$
      131×FFM128$64 \times 64$
      141×FFM64$128 \times 128$
      151×FFM32$256 \times 256$
      161×1 Convstride 110$256 \times 256$
      17Bilinear interpolation$ \times 2$10$512 \times 512$
    • Table 2. Abbreviations of medical terms and corresponding color

      View table
      View in Article

      Table 2. Abbreviations of medical terms and corresponding color

      简称全称对应颜色
      cn5三叉神经
      cn7面神经
      cn9舌咽神经
      cn10迷走神经
      aica+cn7小脑前下动脉及面神经
      pica+cn7小脑后下动脉及面神经
      pica小脑后下动脉
      aica小脑前下动脉
      pv岩静脉
    • Table 3. Training parameters

      View table
      View in Article

      Table 3. Training parameters

      Parameter nameParameter selection
      Learning ratePolicyInitializationPower
      poly0.160.9
      OptimizerPolicyMomentumWeight decay
      SGD0.9$1\times10 ^{- 4}$
      Enter picture size$768 \times 576$
      Batch size8
    • Table 4. Results of LABM encoder with different combinations of dilation rates

      View table
      View in Article

      Table 4. Results of LABM encoder with different combinations of dilation rates

      NameDilation ratesmIoU(%)
      LABM_N2M2L42,4,872.35
      LABM_N2M2L44,8,1672.08
    • Table 5. Results of LABM encoder with different settings

      View table
      View in Article

      Table 5. Results of LABM encoder with different settings

      ConcatenationParams(M)FLOPs(G)mIoU(%)
      0.302.8172.35
      0.544.0373.08
    • Table 6. Results of encoder with different depths when the input size is 512 × 512

      View table
      View in Article

      Table 6. Results of encoder with different depths when the input size is 512 × 512

      nmlParams(M)FLOPs(G)mIoU(%)
      2220.523.9572.35
      2240.544.0373.08
      2440.554.1173.84
      4440.554.2073.37
    • Table 7. Results of FFM decoder with different components

      View table
      View in Article

      Table 7. Results of FFM decoder with different components

      FFMPoolingmIoU(%)
      w/o73.84
      w77.11
      w77.34
    • Table 8. Effect of dilation of U-MVDNet on mIoU

      View table
      View in Article

      Table 8. Effect of dilation of U-MVDNet on mIoU

      ConcatenationmIoU(%)Params(M)
      U-MVDNet77.340.66
      U-MVDNet_w/o dilation75.610.66
      U-MVDNet_First $3 \times 3$ conv ( $r = 2$) 76.810.66
    • Table 9. Experimental results on MVD test set

      View table
      View in Article

      Table 9. Experimental results on MVD test set

      MethodParams(M)Speed(frame·s−1) mIoU(%)cn5cn7cn9cn10aica+cn7pica+cn7picaaicapv
      CGNet[28]0.9487.471.9581.2682.971.2969.8571.6487.1667.3765.6650.42
      EDANet[29]0.6912574.5183.0384.0270.3177.2575.0987.9870.3768.1854.34
      ContextNet[30]0.88163.375.8182.1484.1574.9178.0876.6787.8472.0869.7756.65
      U-MVDNet0.66140.876.2982.2585.4574.876.9176.3287.8574.0869.8359.12
    • Table 10. Experimental results on ISIC 2016 + PH2 test set

      View table
      View in Article

      Table 10. Experimental results on ISIC 2016 + PH2 test set

      ModelParams (M) Speed (frame·s−1) DIC (%) JAC (%) ACC (%) SPE (%) SEN (%)
      DeepLabv3[31]58.298.788.681.291.989.195.9
      CA-Net[32]2.79130.388.780.593.291.396.9
      U-MVDNet0.66175.189.381.793.293.394.3
    • Table 11. Two different hardware environments

      View table
      View in Article

      Table 11. Two different hardware environments

      Jetson Xavier服务器
      GPUVoltaGTX 2080Ti
      CPU8核Carmel ARM8核i7-9700K
      显存32GB LPDDR4x11GB GDDR6
      显存带宽136.5 GB/s616 GB/s
      CUDA核心5124352
    • Table 12. Test results by different methods with different resolutions

      View table
      View in Article

      Table 12. Test results by different methods with different resolutions

      MethodSizeTimes/msSpeed/frame·s−1mIoU/%
      CGNet[28]$640 \times 480$65.715.270.31
      $768 \times 576$69.214.471.95
      EDANet[29]$640 \times 480$42.323.673.2
      $768 \times 576$45.222.174.18
      ContextNet[30]$640 \times 480$34.528.974.81
      $768 \times 576$36.127.775.81
      U-MVDNet$640 \times 480$41.524.275.76
      $768 \times 576$43.622.976.29
    Tools

    Get Citation

    Copy Citation Text

    Rui-feng BAI, Shan JIANG, Hai-jiang SUN, Xin-rui LIU. Real-time semantic segmentation of microvascular decompression images based on encoder-decoder structure[J]. Chinese Optics, 2022, 15(5): 1055

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Jun. 10, 2022

    Accepted: --

    Published Online: Sep. 29, 2022

    The Author Email:

    DOI:10.37188/CO.2022-0120

    Topics