Opto-Electronic Engineering, Volume. 52, Issue 2, 240259-1(2025)
Optimized design of large aperture space camera structure
[1] Zhang X J, Fan Y C, Bao H et al. Applications and development of ultra large aperture space optical remote sensors[J]. Opt Precision Eng, 24, 2613-2626(2016).
[2] Zhu R Z, Cong Y T, Wang H F et al. Global high-resolution optical satellite overview (1): USA and Canada[J]. Spacecr Eng, 24, 85-106(2015).
[3] Lu G, Gao L, Wang Y M. Evaluation and analysis on multiple fusion methods for GJ-1 satellite imagery[J]. Remote Sens Inf, 33, 124-131(2018).
[4] Xu W, Jin G, Wang J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J]. Opt Precision Eng, 25, 1969-1978(2017).
[5] Li L, Zhao Y. A gravity unloading method of on-ground alignment for large aperture remote sensor[J]. Spacecr Recovery Remote Sens, 37, 69-76(2016).
[6] He X, Yang X, Li Y et al. Gravity compensation optimization algorithm for large aperture spatial optical telescope[J]. Opt Precision Eng, 26, 2764-2775(2018).
[7] Sun Y X, Luo S K, Gao C et al. Optimization method for large-aperture space mirror’s gravity unload[J]. Infrared and Laser Engineering, 50, 20200103(2021).
[8] Han O, Kienholz D, Janzen P et al. Gravity-offloading system for large-displacement ground testing of spacecraft mechanisms[C], 119-132(2010).
[9] Bai J, Sun Y X, Liu Z J et al. An optimization method for simulation of gravity unloading of ground-mounted space camera[J]. Spacecr Environ Eng, 38, 401-406(2021).
[10] Chaney D M, Hadaway J B, Lewis J A et al. Cryogenic radius of curvature matching for the JWST primary mirror segments[J]. Astron Space Opt Syst, 7439, 743916(2009).
[11] Song W Y, Xie P, Wang X. Design of lightweight split support structure for large space off-axis three mirror camera[J]. Opt Precision Eng, 29, 571-581(2021).
[12] Xi J L, Zhang L, Xie P et al. Optimization design and test of the supporting structure for the off-axis three-mirror reflective space camera[J]. Opto-Electron Eng, 43, 45-51(2016).
[13] Li B H, Luo J, Qiu M Y et al. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope[J]. Opto-Electron Eng, 50, 230155(2023).
[14] Hu S W, Zhang Y, Wang Y F et al. Concept design for the main structure of 30 m Chinese Future Giant Telescope[J]. Opto-Electron Eng, 49, 210402(2022).
[15] Guo J, Zhu L, Zhao J et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Opt Precision Eng, 27, 1138-1147(2019).
[16] Yoder P R, Zhou H X, Cheng Y F. Opto-Mechanical Systems Design[M](2008).
Yoder P R, 周海宪, 程云芳. 光机系统设计[M](2008).
[17] Gao Q, Wu Y H, Luan J Z et al. The influence of sweep rate on the structure responses of sine-sweep excitations[J]. Spacecr Environ Eng, 37, 250-257(2020).
[18] Liang X P, Wang H. Structural Optimization: Principles and Engineering Applications[M], 1-3(2010).
[19] Wang Z S, Zhang J X, Wang J X et al. A back propagation neural network based optimizing model of space-based large mirror structure[J]. Optik, 179, 780-786(2019).
Get Citation
Copy Citation Text
Mingdong Shao, Jiang Guo, Yongpeng Cui, Liwei Yang, Longjia Zhou, Hao Wang. Optimized design of large aperture space camera structure[J]. Opto-Electronic Engineering, 2025, 52(2): 240259-1
Category: Article
Received: Nov. 5, 2024
Accepted: Jan. 14, 2025
Published Online: Apr. 27, 2025
The Author Email: