Laser & Optoelectronics Progress, Volume. 62, Issue 17, 1730004(2025)

Thermal Growth Oxide Layer Thickness Detection Using Terahertz Time-Domain Spectroscopy Combined with Deep Learning

Chenhao Xue1, Jianhui Ma2, Guang Yang2, Jingqi Tong1, and Jiyuan Zhao1、*
Author Affiliations
  • 1College of Automation, Beijing Information Science & Technology University, Beijing 100192, China
  • 2AECC Sichuan Gas Turbine Establishment, Chengdu 610500, Sichuan , China
  • show less
    Figures & Tables(15)
    Structure of in-service TBC
    Terahertz wave propagation process inside TBC
    Single group TBC terahertz time-domain signal
    TBC sample. (a) TC sample; (b) BC sample after high-temperature oxidation treatment; (c) composite TBC sample
    LSTM structure
    Attention-LSTM neural network model structure
    Simulation data training results
    Simulation data fitting curve of TGO layer thickness and mean relative error
    Physical sample data training results
    Physical sample fitting curve of TGO layer thickness and mean relative error
    • Table 1. Finite-difference time-domain simulation parameters

      View table

      Table 1. Finite-difference time-domain simulation parameters

      ParameterValue
      Time100 ps
      Frequency0.3‒1.0 THz
      Thickness of TC300 μm
      Refractive index of TC5.0
      Thickness of TGO1.0‒10.5 μm
    • Table 2. TGO layer thicknesses of physical samples

      View table

      Table 2. TGO layer thicknesses of physical samples

      NumberThickness of TGO /μm
      13.0
      24.0
      35.2
      45.8
      56.2
      67.2
      78.0
      88.5
      99.2
      1010.3
    • Table 3. Simulation data training errors of LSTM model

      View table

      Table 3. Simulation data training errors of LSTM model

      Thickness /μmMean relative error /%Thickness /μmMean relative error /%
      1122.5616.7
      264.9712.3
      339.7811.8
      422.8912.4
      519.51010.0
    • Table 4. Training errors of simulation data

      View table

      Table 4. Training errors of simulation data

      Thickness /μmMean relative error /%Thickness /μmMean relative error /%
      1.020.16.05.9
      1.513.36.52.9
      2.018.87.03.4
      2.511.07.54.1
      3.08.18.05.5
      3.56.58.56.1
      4.07.79.02.9
      4.54.89.53.4
      5.06.310.04.5
      5.54.810.53.6
    • Table 5. Training errors of physical sample data

      View table

      Table 5. Training errors of physical sample data

      Thickness /μmMean relative error /%
      3.09.4
      4.07.9
      5.28.7
      5.86.3
      6.25.7
      7.24.1
      8.03.7
      8.54.2
      9.22.8
      10.33.9
    Tools

    Get Citation

    Copy Citation Text

    Chenhao Xue, Jianhui Ma, Guang Yang, Jingqi Tong, Jiyuan Zhao. Thermal Growth Oxide Layer Thickness Detection Using Terahertz Time-Domain Spectroscopy Combined with Deep Learning[J]. Laser & Optoelectronics Progress, 2025, 62(17): 1730004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Jan. 15, 2025

    Accepted: Feb. 26, 2025

    Published Online: Sep. 12, 2025

    The Author Email: Jiyuan Zhao (jiyuan.zhao@bistu.edu.cn)

    DOI:10.3788/LOP250520

    CSTR:32186.14.LOP250520

    Topics