Chinese Journal of Ship Research, Volume. 19, Issue 1, 256(2024)

Unmanned surface vehicle escape strategy based on hybrid sampling deep Q-network

Yuanpeng YANG1,2, Lifei SONG2, Jiaqi MAO2, Yi LI2, and Houjing CHEN2,3
Author Affiliations
  • 1Systems Engineering Research Institute, CSSC, Beijing 100094, China
  • 2Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan 430063, China
  • 3China Ship Development and Design Center, Wuhan 430064, China
  • show less
    Figures & Tables(15)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Parameters of neural network

      View table
      View in Article

      Table 1. Parameters of neural network

      输入输出
      输入层21×1
      隐藏层1128×1256×1
      隐藏层2256×1256×1
      隐藏层3256×1256×1
      隐藏层4256×1128×1
      隐藏层5128×164×1
      隐藏层664×14×1
      输出层4×1
    • Table 2. Parameters setting for HS-DQN algorithm

      View table
      View in Article

      Table 2. Parameters setting for HS-DQN algorithm

      参数数值
      学习率α0.001
      折扣因子γ0.9
      ε-greedy探索策略概率0.1
      网络学习频率10
      经验池大小10000
      样本池大小NS100
      混合池大小$ {M_{\text{S}}} $64
    • Table 3. Comparison of evaluation indicators

      View table
      View in Article

      Table 3. Comparison of evaluation indicators

      DQNHS-DQN
      平均值−6.68−4.41
      方差883.46773.82
    • Table 4. Initial position and speed of pursuit ship

      View table
      View in Article

      Table 4. Initial position and speed of pursuit ship

      围捕船编号位置/m速度/(m·s−1)
      1[265.9, 346.1][−11.498, 3.432]
      2[−449.5 146.8][−11.655, 2.858]
      3[−197.6, −381.0][2.992, −11.621]
      4[320.3, −252.4][5.512, −10.659]
    Tools

    Get Citation

    Copy Citation Text

    Yuanpeng YANG, Lifei SONG, Jiaqi MAO, Yi LI, Houjing CHEN. Unmanned surface vehicle escape strategy based on hybrid sampling deep Q-network[J]. Chinese Journal of Ship Research, 2024, 19(1): 256

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 27, 2022

    Accepted: --

    Published Online: Mar. 18, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03105

    Topics