Journal of Semiconductors, Volume. 42, Issue 12, 124101(2021)
Framework for TCAD augmented machine learning on multi- I–V characteristics using convolutional neural network and multiprocessing
[1]
[2] H Carrillo-Nuñez, N Dimitrova, A Asenov et al. Machine learning approach for predicting the effect of statistical variability in Si junctionless nanowire transistors. IEEE Electron Device Lett, 40, 1366(2019).
[3]
[4] H Y Wong, M Xiao, B Y Wang et al. TCAD-machine learning framework for device variation and operating temperature analysis with experimental demonstration. IEEE J Electron Devices Soc, 8, 992(2020).
[5]
[6] H B Hammouda, M Mhiri, Z Gafsi et al. Neural-based models of semiconductor devices for SPICE simulator. Am J Appl Sci, 5, 385(2008).
[7]
[8] F Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv, 23, 345(1991).
[9]
[10] Y Lecun, L Bottou, Y Bengio et al. Gradient-based learning applied to document recognition. Proc IEEE, 86, 2278(1998).
[11]
[12] N Srivastava, G Hinton, A Krizhevsky et al. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res, 15, 1929(2014).
[13]
[14]
[15] D E Rumelhart, G E Hinton, R J Williams. Learning internal representations by error propagation. Cambridge, MA, USA: MIT Press, 318(1986).
[16] G E Hinton, R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313, 504(2006).
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24] I Goodfellow, J Pouget-Abadie, M Mirza et al. Generative adversarial networks. Commun ACM, 63, 139(2020).
Get Citation
Copy Citation Text
Thomas Hirtz, Steyn Huurman, He Tian, Yi Yang, Tian-Ling Ren. Framework for TCAD augmented machine learning on multi- I–V characteristics using convolutional neural network and multiprocessing[J]. Journal of Semiconductors, 2021, 42(12): 124101
Category: Articles
Received: Apr. 6, 2021
Accepted: --
Published Online: Dec. 14, 2021
The Author Email: