Photonics Research, Volume. 10, Issue 1, 33(2022)

Near-infrared electroluminescence of AlGaN capped InGaN quantum dots formed by controlled growth on photoelectrochemical etched quantum dot templates

Xiongliang Wei1,*... Syed Ahmed Al Muyeed1, Haotian Xue1, Elia Palmese1, Renbo Song1, Nelson Tansu2,3,4, and Jonathan J. Wierer15 |Show fewer author(s)
Author Affiliations
  • 1Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
  • 2School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
  • 3Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
  • 4e-mail: nelson.tansu@adelaide.edu.au
  • 5e-mail: jjwierer@ncsu.edu
  • show less
    References(43)

    [1] Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, J.-H. He. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl., 9, 91(2020).

    [2] H. Zhang, Q. Su, S. Chen. Recent progress in the device architecture of white quantum-dot light-emitting diodes. J. Inf. Disp., 20, 169-180(2019).

    [3] H. J. Jang, J. Y. Lee, J. Kim, J. Kwak, J. H. Park. Progress of display performances: AR, VR, QLED, and OLED. J. Inf. Disp., 21, 1-9(2020).

    [4] J. J. Wierer, N. Tansu, A. J. Fischer, J. Y. Tsao. III-nitride quantum dots for ultra-efficient solid-state lighting. Laser Photon. Rev., 10, 612-622(2016).

    [5] S. Fafard, K. Hinzer, C. N. Allen. Semiconductor quantum dot nanostructures and their roles in the future of photonics. Braz. J. Phys., 34, 550-554(2004).

    [6] B. Tongbram, H. Ghadi, S. Adhikary, A. Mandal, S. Chakrabarti. Cross-sectional TEM (XTEM) analysis for vertically coupled quaternary In0.21Al0.21Ga0.58As capped InAs/GaAs quantum dot infrared photodetectors. Proc. SPIE, 9373, 93730S(2015).

    [7] D. Yan, S. Zhao, Y. Zhang, H. Wang, Z. Zang, D. Yan, S. Zhao, Y. Zhang, H. Wang, Z. Zang. High efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron. Adv., 4, 200075(2021).

    [8] D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng, X. Tang. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 15, 1901173(2019).

    [9] Q. Mo, C. Chen, W. Cai, S. Zhao, D. Yan, Z. Zang. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser Photon. Rev., 15, 2100278(2021).

    [10] S. K. Karunakaran, G. M. Arumugam, W. Yang, S. Ge, S. N. Khan, Y. Mai, X. Lin, G. Yang. Europium (II)-doped all-inorganic CsPbBr3 perovskite solar cells with carbon electrodes. Sol. RRL, 4, 2000390(2020).

    [11] D. G. Deppe, L. A. Graham, D. L. Huffaker. Enhanced spontaneous emission using quantum dots and an apertured microcavity. IEEE J. Quantum Electron., 35, 1502-1508(1999).

    [12] D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe. 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett., 73, 2564-2566(1998).

    [13] A. Stintz, G. T. Liu, H. Li, L. F. Lester, K. J. Malloy. Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure. IEEE Photon. Technol. Lett., 12, 591-593(2000).

    [14] J. M. Ferreyra, C. R. Proetto. Strong-confinement approach for impurities in quantum dots. Phys. Rev. B, 52, R2309-R2312(1995).

    [15] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett., 40, 939-941(1982).

    [16] I.-K. Park, M.-K. Kwon, C.-Y. Cho, J.-Y. Kim, C.-H. Cho, S.-J. Park. Effect of InGaN quantum dot size on the recombination process in light-emitting diodes. Appl. Phys. Lett., 92, 253105(2008).

    [17] C. H. Lu, Y. C. Li, Y. H. Chen, S. C. Tsai, Y. L. Lai, Y. L. Li, C. P. Liu. Output power enhancement of InGaN/GaN based green light-emitting diodes with high-density ultra-small In-rich quantum dots. J. Alloys Compd., 555, 250-254(2013).

    [18] W. Lv, L. Wang, J. Wang, Z. Hao, Y. Luo. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Res. Lett., 71, 617(2012).

    [19] T. Frost, A. Banerjee, K. Sun, S. L. Chuang, P. Bhattacharya. InGaN/GaN quantum dot red (λ = 630 nm) laser. IEEE J. Quantum Electron., 49, 923-931(2013).

    [20] Y. Mei, G.-E. Weng, B.-P. Zhang, J.-P. Liu, W. Hofmann, L.-Y. Ying, J.-Y. Zhang, Z.-C. Li, H. Yang, H.-C. Kuo. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl., 61, e16199(2016).

    [21] B. Damilano, N. Grandjean, S. Vézian, J. Massies. InGaN heterostructures grown by molecular beam epitaxy: from growth mechanism to optical properties. J. Cryst. Growth, 227–228, 466-470(2001).

    [22] C. Bayram, M. Razeghi. Stranski–Krastanov growth of InGaN quantum dots emitting in green spectra. Appl. Phys. A, 96, 403-408(2009).

    [23] C. Adelmann, J. Simon, N. T. Pelekanos, Y. Samson, G. Feuillet, B. Daudin. Growth and optical characterization of InGaN quantum dots resulting from a 2D–3D transition. Phys. Status Solidi, 176, 639-642(1999).

    [24] B. Damilano, N. Grandjean, S. Dalmasso, J. Massies. Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth. Appl. Phys. Lett., 75, 3751-3753(1999).

    [25] S. Figge, C. Tessarek, T. Aschenbrenner, D. Hommel. InGaN quantum dot growth in the limits of Stranski–Krastanov and spinodal decomposition. Phys. Status Solidi, 248, 1765-1776(2011).

    [26] F. Ivaldi, C. Meissner, J. Domagala, S. Kret, M. Pristovsek, M. Högele, M. Kneissl. Influence of a GaN cap layer on the morphology and the physical properties of embedded self-organized InN quantum dots on GaN(0001) grown by metal–organic vapour phase epitaxy. Jpn. J. Appl. Phys., 50, 031004(2011).

    [27] Q. Wang, T. Wang, J. Bai, A. G. Cullis, P. J. Parbrook, F. Ranalli. Influence of annealing temperature on optical properties of InGaN quantum dot based light emitting diodes. Appl. Phys. Lett., 93, 081915(2008).

    [28] S. Liu, J. Yang, D. Zhao, D. Jiang, J. Zhu, F. Liang, P. Chen, Z. Liu, Y. Xing, L. Peng, L. Zhang. Uniform-sized indium quantum dots grown on the surface of an InGaN epitaxial layer by a two-step cooling process. Nanoscale Res. Lett., 14, 280(2019).

    [29] A. Kadir, C. Meissner, T. Schwaner, M. Pristovsek, M. Kneissl. Growth mechanism of InGaN quantum dots during metalorganic vapor phase epitaxy. J. Cryst. Growth, 334, 40-45(2011).

    [30] L. Wang, L. Wang, C.-J. Chen, K.-C. Chen, Z. Hao, Y. Luo, C. Sun, M.-C. Wu, J. Yu, Y. Han, B. Xiong, J. Wang, H. Li. Green InGaN quantum dots breaking through efficiency and bandwidth bottlenecks of micro-LEDs. Laser Photon. Rev., 15, 2000406(2021).

    [31] G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, N. Tansu. Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography. Nanoscale Res. Lett., 61, 342(2011).

    [32] Y. K. Ee, H. Zhao, R. A. Arif, M. Jamil, N. Tansu. Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy. J. Cryst. Growth, 310, 2320-2325(2008).

    [33] X. Xiao, A. J. Fischer, G. T. Wang, P. Lu, D. D. Koleske, M. E. Coltrin, J. B. Wright, S. Liu, I. Brener, G. S. Subramania, J. Y. Tsao. Quantum-size-controlled photoelectrochemical fabrication of epitaxial InGaN quantum dots. Nano Lett., 14, 5616-5620(2014).

    [34] X. Xiao, A. J. Fischer, M. E. Coltrin, P. Lu, D. D. Koleske, G. T. Wang, R. Polsky, J. Y. Tsao. Photoelectrochemical etching of epitaxial InGaN thin films: self-limited kinetics and nanostructuring. Electrochim. Acta, 162, 163-168(2015).

    [35] X. Wei, S. A. Al Muyeed, M. R. Peart, W. Sun, N. Tansu, J. J. Wierer. Room temperature luminescence of passivated InGaN quantum dots formed by quantum-sized-controlled photoelectrochemical etching. Appl. Phys. Lett., 113, 121106(2018).

    [36] S. A. Al Muyeed, X. Wei, D. Borovac, R. Song, N. Tansu, J. J. Wierer. Controlled growth of InGaN quantum dots on photoelectrochemically etched InGaN quantum dot templates. J. Cryst. Growth, 540, 125652(2020).

    [37] S. A. Al Muyeed, W. Sun, X. Wei, R. Song, D. D. Koleske, N. Tansu, J. J. Wierer. Strain compensation in InGaN-based multiple quantum wells using AlGaN interlayers. AIP Adv., 7, 105312(2017).

    [38] C. B. Soh, W. Liu, S. J. Chua, R. J. N. Tan, S. S. Ang, S. Y. Chow. Red emitting LEDs formed by indium rich quantum dots incorporated in MQWs. Phys. Status Solidi, 208, 1579-1581(2011).

    [39] S. Saito, R. Hashimoto, J. Hwang, S. Nunoue. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Appl. Phys. Express, 6, 111004(2013).

    [40] D. D. Koleske, A. J. Fischer, B. N. Bryant, P. G. Kotula, J. J. Wierer. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530–590 nm with AlGaN interlayers. J. Cryst. Growth, 415, 57-64(2015).

    [41] S. L. Chuang, N. Holonyak. Efficient quantum well to quantum dot tunneling: analytical solutions. Appl. Phys. Lett., 80, 1270-1272(2002).

    [42] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys., 89, 5815-5875(2001).

    [43] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L. F. Eastman. Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter, 14, 3399-3434(2002).

    Tools

    Get Citation

    Copy Citation Text

    Xiongliang Wei, Syed Ahmed Al Muyeed, Haotian Xue, Elia Palmese, Renbo Song, Nelson Tansu, Jonathan J. Wierer, "Near-infrared electroluminescence of AlGaN capped InGaN quantum dots formed by controlled growth on photoelectrochemical etched quantum dot templates," Photonics Res. 10, 33 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optoelectronics

    Received: Aug. 23, 2021

    Accepted: Oct. 25, 2021

    Published Online: Dec. 9, 2021

    The Author Email: Xiongliang Wei (xiw314@lehigh.edu)

    DOI:10.1364/PRJ.441122

    Topics