Journal of Synthetic Crystals, Volume. 52, Issue 5, 918(2023)
Epitaxial Growth Study of n-Type 4H-SiC Films by High-Speed Wafer Rotation Vertical Hot-Wall CVD Equipment
[1] [1] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422.
[2] [2] MORKO H, STRITE S, GAO G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398.
[3] [3] EDDY C R Jr, GASKILL D K. Materials science. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400.
[4] [4] LEE T, BHUNIA S, MEHREGANY M. Electromechanical computing at 500 ℃ with silicon carbide[J]. Science, 2010, 329 (5997): 1316-1318.
[7] [7] UEDA T, NISHINO H, MATSUNAMI H. Crystal growth of SiC by step-controlled epitaxy[J]. Journal of Crystal Growth, 1990, 104(3): 695-700.
[8] [8] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Online Proceedings Library, 1987, 97(1): 233-245.
[9] [9] LEONE S, HENRY A, JANZN E, et al. Epitaxial growth of SiC with chlorinated precursors on different off-angle substrates[J]. Journal of Crystal Growth, 2013, 362: 170-173.
[10] [10] CHOKAWA K, DAIGO Y, MIZUSHIMA I, et al. First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC (0001) surface under conventional CVD and Halide CVD environments[J]. Japanese Journal of Applied Physics, 2021, 60(8): 085503.
[11] [11] HENRY A, LEONE S, BEYER C, et al. SiC epitaxy growth using chloride-based CVD [J]. Physica B, 2012, 407(10): 1467-1471.
[12] [12] LEONE S, MAUCERI M, PISTONE G. et al. SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor [J].Materials Science Forum, 2006, 527-529: 179-182.
[13] [13] DEIVENDRAN B, SHINDE V M, KUMAR H, et al. 3D Modeling and optimization of SiC deposition from CH3SiCl3/H2 in a commercial hot wall reactor[J]. Journal of Crystal Growth, 2021, 554: 125944.
[20] [20] LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition: CVD, 2006, 12(8/9): 509-515.
[21] [21] ISHIDA Y, TAKAHASHI T, OKUMURA H, et al. Development of a practical high-rate CVD system[J]. Mater Sci Forum, 2008, 600-603: 119-122.
[22] [22] DAIGO Y, WATANABE T, ISHIGURO A, et al. Impact of precise temperature control for 4H-SiC epitaxy on large diameter wafers[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2021: 1-4.
[23] [23] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663.
[24] [24] SCHNER A. New development in hot wall vapor phase epitaxial growth of silicon carbide[J]. Silicon Carbide, 2004: 229-250.
[25] [25] DAIGO Y, ISHII S, KOBAYASHI T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBK06.
[27] [27] DAIGO Y, WATANABE T, ISHIGURO A, et al. Reduction of harmful effect due to by-product in CVD reactor for 4H-SiC epitaxy[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2021: 1-4.
Get Citation
Copy Citation Text
HAN Yuebin, PU Yong, SHI Jianxin, YAN Honglei. Epitaxial Growth Study of n-Type 4H-SiC Films by High-Speed Wafer Rotation Vertical Hot-Wall CVD Equipment[J]. Journal of Synthetic Crystals, 2023, 52(5): 918
Category:
Received: Feb. 20, 2023
Accepted: --
Published Online: Jun. 11, 2023
The Author Email: HAN Yuebin (hanshan@sicentury.com)
CSTR:32186.14.