Chinese Journal of Lasers, Volume. 51, Issue 7, 0701002(2024)
Research Progress in Generation and Spectral Technology of High‑Repetition‑Rate Extreme‑Ultraviolet‑Light Sources
[1] McPherson A, Gibson G, Jara H et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. Journal of the Optical Society of America B, 4, 595-601(1987).
[2] Ferray M, L’Huillier A, Li X F et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases[J]. Journal of Physics B: Atomic Molecular Physics, 21, L31-L35(1988).
[3] Véniard V, Taïeb R, Maquet A. Phase dependence of (N+1)-color (N>1) ir-uv photoionization of atoms with higher harmonics[J]. Physical Review A, 54, 721-728(1996).
[4] Nisoli M, Sansone G. New frontiers in attosecond science[J]. Progress in Quantum Electronics, 33, 17-59(2009).
[5] Itatani J, Levesque J, Zeidler D et al. Tomographic imaging of molecular orbitals[J]. Nature, 432, 867-871(2004).
[6] Cavalieri A L, Müller N, Uphues T et al. Attosecond spectroscopy in condensed matter[J]. Nature, 449, 1029-1032(2007).
[7] Haarlammert T, Zacharias H. Application of high harmonic radiation in surface science[J]. Current Opinion in Solid State and Materials Science, 13, 13-27(2009).
[8] Cheng Y, Chini M, Wang X W et al. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy[J]. Physical Review A, 94, 023403(2016).
[9] Chen S H, Bell M J, Beck A R et al. Light-induced states in attosecond transient absorption spectra of laser-dressed helium[J]. Physical Review A, 86, 063408(2012).
[10] Wang X W, Chini M, Cheng Y et al. In situ calibration of an extreme ultraviolet spectrometer for attosecond transient absorption experiments[J]. Applied Optics, 52, 323-329(2013).
[11] Saito N, Sannohe H, Ishii N et al. Real-time observation of electronic, vibrational, and rotational dynamics in nitric oxide with attosecond soft X-ray pulses at 400 eV[J]. Optica, 6, 1542-1546(2019).
[12] Saito N, Douguet N, Sannohe H et al. Attosecond electronic dynamics of core-excited states of N2O in the soft X-ray region[J]. Physical Review Research, 3, 043222(2021).
[13] Pertot Y, Schmidt C, Matthews M et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 355, 264-267(2017).
[14] Chew A, Douguet N, Cariker C et al. Attosecond transient absorption spectrum of argon at the L2,3 edge[J]. Physical Review A, 97, 031407(2018).
[15] Buades B, Picón A, Berger E et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES[J]. Applied Physics Reviews, 8, 011408(2021).
[16] Mikaelsson S, Vogelsang J, Guo C et al. A high-repetition rate attosecond light source for time-resolved coincidence spectroscopy[J]. Nanophotonics, 10, 424(2020).
[17] Ravasio A, Gauthier D, Maia F R N C et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Physical Review Letters, 103, 028104(2009).
[18] Vu Le H, Ba Dinh K, Hannaford P et al. High resolution coherent diffractive imaging with a table-top extreme ultraviolet source[J]. Journal of Applied Physics, 116, 173104(2014).
[19] Rupp D, Monserud N, Langbehn B et al. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source[J]. Nature Communications, 8, 493(2017).
[20] Zürch M, Rothhardt J, Hädrich S et al. Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet[J]. Scientific Reports, 4, 7356(2014).
[21] Huijts J, Fernandez S, Gauthier D et al. Broadband coherent diffractive imaging[J]. Nature Photonics, 14, 618-622(2020).
[22] Chen F M, Wang J, Pan M J et al. Time-resolved ARPES with tunable 12‒21.6 eV XUV at 400 kHz repetition rate[J]. Review of Scientific Instruments, 94, 043905(2023).
[23] Carpene E, Mancini E, Dallera C et al. A versatile apparatus for time-resolved photoemission spectroscopy via femtosecond pump-probe experiments[J]. The Review of Scientific Instruments, 80, 055101(2009).
[24] Smallwood C L, Jozwiak C, Zhang W T et al. An ultrafast angle-resolved photoemission apparatus for measuring complex materials[J]. The Review of Scientific Instruments, 83, 123904(2012).
[25] Boschini F, Hedayat H, Dallera C et al. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments[J]. The Review of Scientific Instruments, 85, 123903(2014).
[26] Yan C H, Green E, Fukumori R et al. An integrated quantum material testbed with multi-resolution photoemission spectroscopy[J]. Review of Scientific Instruments, 92, 113907(2021).
[27] Karni O, Barré E, Pareek V et al. Structure of the Moiré exciton captured by imaging its electron and hole[J]. Nature, 603, 247-252(2022).
[28] Zhou X J, He S L, Liu G D et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review[J]. Reports on Progress in Physics, 81, 062101(2018).
[29] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 71, 1994-1997(1993).
[30] Klaiber M, Hatsagortsyan K Z, Keitel C H. Fully relativistic laser-induced ionization and recollision processes[J]. Physical Review A, 75, 063413(2007).
[31] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[32] Zhao K. Laser, chirped pulse amplification, ultrafast optics, and Nobel Prize in Physics[J]. Chinese Science Bulletin, 64, 1433-1440(2019).
[33] Wang G Y, Lü R C, Xu S Y et al. High repetition rate ultrafast laser technology for driving high-order harmonic generation[J]. Chinese Science Bulletin, 66, 924-939(2021).
[34] Schmidt J, Guggenmos A, Chew S H et al. Development of a 10 kHz high harmonic source up to 140 eV photon energy for ultrafast time-, angle-, and phase-resolved photoelectron emission spectroscopy on solid targets[J]. The Review of Scientific Instruments, 88, 083105(2017).
[35] Chiang C T, Blättermann A, Huth M et al. High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy[J]. Applied Physics Letters, 101, 071116(2012).
[36] Heyl C M, Güdde J, L’Huillier A et al. High-order harmonic generation with μJ laser pulses at high repetition rates[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 074020(2012).
[37] Mourou G, Brocklesby B, Tajima T et al. The future is fibre accelerators[J]. Nature Photonics, 7, 258-261(2013).
[38] Chang W Z, Zhou T, Siiman L A et al. Femtosecond pulse spectral synthesis in coherently-spectrally combined multi-channel fiber chirped pulse amplifiers[J]. Optics Express, 21, 3897-3910(2013).
[39] Hädrich S, Demmler S, Rothhardt J et al. High-repetition-rate sub-5-fs pulses with 12 GW peak power from fiber-amplifier-pumped optical parametric chirped-pulse amplification[J]. Optics Letters, 36, 313-315(2011).
[40] Hädrich S, Klenke A, Hoffmann A et al. Nonlinear compression to sub-30-fs, 0.5 mJ pulses at 135 W of average power[J]. Optics Letters, 38, 3866-3869(2013).
[41] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[42] Rothhardt J, Hädrich S, Klenke A et al. 53 W average power few-cycle fiber laser system generating soft x rays up to the water window[J]. Optics Letters, 39, 5224-5227(2014).
[43] Hädrich S, Klenke A, Rothhardt J et al. High photon flux table-top coherent extreme-ultraviolet source[J]. Nature Photonics, 8, 779-783(2014).
[44] Hädrich S, Krebs M, Hoffmann A et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources[J]. Light: Science & Applications, 4, e320(2015).
[45] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016).
[46] Müller M, Aleshire C, Klenke A et al. 10.4 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 45, 3083-3086(2020).
[47] Frassetto F, Cacho C, Froud C A et al. Single-grating monochromator for extreme-ultraviolet ultrashort pulses[J]. Optics Express, 19, 19169-19181(2011).
[48] Frietsch B, Carley R, Döbrich K et al. A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy[J]. The Review of Scientific Instruments, 84, 075106(2013).
[49] Eich S, Stange A, Carr A V et al. Time- and angle-resolved photoemission spectroscopy with optimized high-harmonic pulses using frequency-doubled Ti: Sapphire lasers[J]. Journal of Electron Spectroscopy and Related Phenomena, 195, 231-236(2014).
[50] Ojeda J, Arrell C A, Grilj J et al. Harmonium: a pulse preserving source of monochromatic extreme ultraviolet (30-110 eV) radiation for ultrafast photoelectron spectroscopy of liquids[J]. Structural Dynamics, 3, 023602(2015).
[51] Rohde G, Hendel A, Stange A et al. Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution[J]. Review of Scientific Instruments, 87, 103102(2016).
[52] Nie Z H, Turcu I C E, Li Y et al. Spin-ARPES EUV beamline for ultrafast materials research and development[J]. Applied Sciences, 9, 370(2019).
[53] Puppin M, Deng Y, Nicholson C W et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate[J]. The Review of Scientific Instruments, 90, 023104(2019).
[54] Mills A K, Zhdanovich S, Na M X et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy[J]. The Review of Scientific Instruments, 90, 083001(2019).
[55] Csizmadia T, Filus Z, Grósz T et al. Spectrally tunable ultrashort monochromatized extreme ultraviolet pulses at 100 kHz[J]. APL Photonics, 8, 056105(2023).
[56] Wang J, Chen F M, Pan M J et al. High-flux wavelength tunable XUV source in the 12‒40.8 eV photon energy range with adjustable energy and time resolution for Tr-ARPES applications[J]. Optics Express, 31, 9854-9871(2023).
[57] Lorek E, Larsen E W, Heyl C M et al. High-order harmonic generation using a high-repetition-rate turnkey laser[J]. The Review of Scientific Instruments, 85, 123106(2014).
[58] Emaury F, Diebold A, Saraceno C J et al. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator[J]. Optica, 2, 980-984(2015).
[59] Liu Y Y, Beetar J E, Hosen M M et al. Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb: KGW amplifier[J]. The Review of Scientific Instruments, 91, 013102(2020).
[60] Cucini R, Pincelli T, Panaccione G et al. Coherent narrowband light source for ultrafast photoelectron spectroscopy in the 17-31 eV photon energy range[J]. Structural Dynamics, 7, 014303(2020).
[61] Lee C M, Rohwer T, Sie E J et al. High resolution time- and angle-resolved photoemission spectroscopy with 11 eV laser pulses[J]. The Review of Scientific Instruments, 91, 043102(2020).
[62] Guo Q D, Dendzik M, Grubišić‑Čabo A et al. A narrow bandwidth extreme ultra-violet light source for time- and angle-resolved photoemission spectroscopy[J]. Structural Dynamics, 9, 024304(2022).
[63] Liu J, Zeng Z N, Liang X Y et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Strategic Study of CAE, 22, 42-48(2020).
[64] Krebs M, Hädrich S, Demmler S et al. Towards isolated attosecond pulses at megahertz repetition rates[J]. Nature Photonics, 7, 555-559(2013).
[65] Furch F J, Witting T, Giree A et al. CEP-stable few-cycle pulses with more than 190 μJ of energy at 100 kHz from a noncollinear optical parametric amplifier[J]. Optics Letters, 42, 2495-2498(2017).
[66] Witting T, Furch F, Osolodkov M et al. Generation and characterization of isolated attosecond pulses for coincidence spectroscopy at 100 kHz repetition rate[J]. Journal of Physics: Conference Series, 1412, 072031(2020).
[67] Witting T, Osolodkov M, Schell F et al. Generation and characterization of isolated attosecond pulses at 100 kHz repetition rate[J]. Optica, 9, 145-151(2022).
[68] Harth A, Guo C, Cheng Y C et al. Compact 200 kHz HHG source driven by a few-cycle OPCPA[J]. Journal of Optics, 20, 014007(2018).
[69] Guo C, Harth A, Carlström S et al. Phase control of attosecond pulses in a train[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 034006(2018).
[70] Cheng Y C, Mikaelsson S, Nandi S et al. Controlling photoionization using attosecond time-slit interferences[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 10727-10732(2020).
[71] Borzsonyi A, Cormier E, Lopez-Martens R et al. Latest progress on the few-cycle, high average power lasers of ELI-ALPS[C], M4.1(2023).
[72] Wei Z Y, Zhong S Y, He X K et al. Progresses and trends in attosecond optics[J]. Chinese Journal of Lasers, 48, 0501001(2021).
[73] Wernet P, Gaudin J, Godehusen K et al. Femtosecond time-resolved photoelectron spectroscopy with a vacuum-ultraviolet photon source based on laser high-order harmonic generation[J]. The Review of Scientific Instruments, 82, 063114(2011).
[74] Niu Y, Liu F Y, Liu Y et al. Pressure-dependent phase matching for high harmonic generation of Ar and N2 in the tight focusing regime[J]. Optics Communications, 397, 118-121(2017).
[75] Rothhardt J, Krebs M, Hädrich S et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime[J]. New Journal of Physics, 16, 033022(2014).
[76] Colosimo P, Doumy G, Blaga C I et al. Scaling strong-field interactions towards the classical limit[J]. Nature Physics, 4, 386-389(2008).
[77] Lewenstein M, Salières P, L’Huillier A. Phase of the atomic polarization in high-order harmonic generation[J]. Physical Review A, 52, 4747-4754(1995).
[78] Popmintchev T, Chen M C, Bahabad A et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 10516-10521(2009).
[79] Paul A, Gibson E A, Zhang X S et al. Phase-matching techniques for coherent soft X-ray generation[J]. IEEE Journal of Quantum Electronics, 42, 14-26(2006).
[80] Filus Z, Ye P, Csizmadia T et al. Liquid-cooled modular gas cell system for high-order harmonic generation using high average power laser systems[J]. The Review of Scientific Instruments, 93, 073002(2022).
[81] Kim S, Jin J, Kim Y J et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 453, 757-760(2008).
[82] Han S, Kim H, Kim Y W et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure[J]. Nature Communications, 7, 13105(2016).
[83] Zhao J F, Ou H W, Wu G et al. Evolution of the electronic structure of 1T-CuxTiSe2[J]. Physical Review Letters, 99, 146401(2007).
[84] Liu G D, Wang G L, Zhu Y et al. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV[J]. The Review of Scientific Instruments, 79, 023105(2008).
[85] Jiang J, Liu Z K, Sun Y et al. Signature of type-II Weyl semimetal phase in MoTe2[J]. Nature Communications, 8, 13973(2017).
[86] Mandal P S, Springholz G, Volobuev V V et al. Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator[J]. Nature Communications, 8, 968(2017).
[87] Zhang Y, Wang C L, Yu L et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5[J]. Nature Communications, 8, 15512(2017).
[88] Czerny M, Turner A F. Über den astigmatismus bei spiegelspektrometern[J]. Zeitschrift Für Physik, 61, 792-797(1930).
[89] Guo Q D, Dendzik M, Berntsen M H et al. Efficient low-density grating setup for monochromatization of XUV ultrafast light sources[J]. Optics Express, 31, 8914-8926(2023).
[90] Loriot V, Quintard L, Karras G et al. Time-resolved and spectrally resolved ionization with a single ultrashort XUV-IR beamline[J]. Journal of the Optical Society of America B, 35, A67-A74(2018).
[91] Poletto L, Tondello G, Villoresi P. Optical design of a spectrometer-monochromator for the extreme-ultraviolet and soft-X-ray emission of high-order harmonics[J]. Applied Optics, 42, 6367-6373(2003).
[92] Suzuki C, Koike F, Murakami I et al. Temperature dependent EUV spectra of Gd, Tb and Dy ions observed in the Large Helical Device[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 144012(2015).
[93] Xu Z, Zhang L, Cheng Y X et al. An extreme ultraviolet spectrometer working at 10‒130 Å for tungsten spectra observation with high spectral resolution and fast-time response in Experimental Advanced Superconducting Tokamak[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1010, 165545(2021).
[94] Nakano N, Kuroda H, Kita T et al. Development of a flat-field grazing-incidence XUV spectrometer and its application in picosecond XUV spectroscopy[J]. Applied Optics, 23, 2386-2392(1984).
[95] Peli S, Puntel D, Kopic D et al. Time-resolved VUV ARPES at 10.8 eV photon energy and MHz repetition rate[J]. Journal of Electron Spectroscopy and Related Phenomena, 243, 146978(2020).
[96] Poletto L, Frassetto F. Time-preserving grating monochromators for ultrafast extreme-ultraviolet pulses[J]. Applied Optics, 49, 5465-5473(2010).
[97] Poletto L, Miotti P, Frassetto F et al. Double-configuration grating monochromator for extreme-ultraviolet ultrafast pulses[J]. Applied Optics, 53, 5879-5888(2014).
[98] Grazioli C, Callegari C, Ciavardini A et al. CITIUS: an infrared-extreme ultraviolet light source for fundamental and applied ultrafast science[J]. The Review of Scientific Instruments, 85, 023104(2014).
[99] Poletto L, Frassetto F. Single-grating monochromators for extreme-ultraviolet ultrashort pulses[J]. Applied Sciences, 3, 1-13(2012).
[100] Shvyd’ko Y. Enhanced X-ray angular dispersion and X-ray spectrographs with resolving power beyond 108[J]. Proceedings of SPIE, 8502, 85020J(2012).
[101] Biednov M, Brenner G, Dicke B et al. Alignment of the aberration-free XUV Raman spectrometer at FLASH[J]. Journal of Synchrotron Radiation, 26, 18-27(2019).
[102] Koch T L, Bowers J E. Nature of wavelength chirping in directly modulated semiconductor lasers[J]. Electronics Letters, 20, 1038-1040(1984).
[103] Huang C Z, Duan S F, Zhang W T. High-resolution time- and angle-resolved photoemission studies on quantum materials[J]. Quantum Frontiers, 1, 15(2022).
[104] Al-Obaidi R, Wilke M, Borgwardt M et al. Ultrafast photoelectron spectroscopy of solutions: space-charge effect[J]. New Journal of Physics, 17, 093016(2015).
[105] Hellmann S, Rossnagel K, Marczynski-Bühlow M et al. Vacuum space-charge effects in solid-state photoemission[J]. Physical Review B, 79, 035402(2009).
[106] Long J P, Itchkawitz B S, Kabler M N. Photoelectron spectroscopy of laser-excited surfaces by synchrotron radiation[J]. Journal of the Optical Society of America B: Optical Physics, 13, 201-208(1996).
[107] Siwick B J, Dwyer J R, Jordan R E et al. Ultrafast electron optics: propagation dynamics of femtosecond electron packets[J]. Journal of Applied Physics, 92, 1643-1648(2002).
[108] Vallerga J V, Siegmund O H W. 2K×2K resolution element photon counting MCP sensor with >200 kHz event rate capability[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 442, 159-163(2000).
[109] Hague C F, Underwood J H, Avila A et al. Plane-grating flat-field soft X-ray spectrometer[J]. Review of Scientific Instruments, 76, 023110(2005).
[110] Schwanda W, Eidmann K, Richardson M C. Characterization of a flat-field grazing-incidence XUV spectrometer[J]. Journal of X-Ray Science and Technology, 4, 8-17(1993).
[111] Chini M, Wang H, Zhao B Z, Yamnouchi K, Midorikawa K et al. Attosecond absorption spectroscopy[M]. Progress in ultrafast intense laser science. Springer series in chemical physics, 104, 135-150(2013).
[112] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[113] Torres J P, Torner L[M]. Twisted photons applications of light with orbital angular momentum(2011).
[114] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).
[115] Wang B, Tanksalvala M, Zhang Z et al. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection[J]. Optics Express, 29, 3342-3358(2021).
[116] Hernández-García C, Picón A, San Román J et al. Attosecond extreme ultraviolet vortices from high-order harmonic generation[J]. Physical Review Letters, 111, 083602(2013).
[117] Gariepy G, Leach J, Kim K T et al. Creating high-harmonic beams with controlled orbital angular momentum[J]. Physical Review Letters, 113, 153901(2014).
[118] Géneaux R, Camper A, Auguste T et al. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet[J]. Nature Communications, 7, 12583(2016).
[119] Dorney K M, Rego L, Brooks N J et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation[J]. Nature Photonics, 13, 123-130(2019).
[120] Paufler W, Böning B, Fritzsche S. High harmonic generation with Laguerre-Gaussian beams[J]. Journal of Optics, 21, 094001(2019).
[121] Rego L, Dorney K M, Brooks N J et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum[J]. Science, 364, eaaw9486(2019).
[122] Cho S, Park J H, Hong J et al. Experimental observation of hidden berry curvature in inversion-symmetric bulk 2H-WSe2[J]. Physical Review Letters, 121, 186401(2018).
[123] Cho S, Park J H, Huh S et al. Studying local Berry curvature in 2H-WSe2 by circular dichroism photoemission utilizing crystal mirror plane[J]. Scientific Reports, 11, 1684(2021).
[124] Schüler M, De Giovannini U, Hübener H et al. Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials[J]. Science Advances, 6, eaay2730(2020).
[125] Comby A, Rajak D, Descamps D et al. Ultrafast polarization-tunable monochromatic extreme ultraviolet source at high-repetition-rate[J]. Journal of Optics, 24, 084003(2022).
[126] Yao J P, Cheng Y, Chen J et al. Generation of narrow-bandwidth, tunable, coherent xuv radiation using high-order harmonic generation[J]. Physical Review A, 83, 033835(2011).
[127] Seres J, Seres E, Serrat C et al. Spectral shift and split of harmonic lines in propagation affected high harmonic generation in a long-interaction gas tube[J]. Atoms, 11, 150(2023).
[128] Shan B, Cavalieri A, Chang Z. Tunable high harmonic generation with an optical parametric amplifier[J]. Applied Physics B, 74, s23-s26(2002).
[129] Tani F, Frosz M H, Travers J C et al. Continuously wavelength-tunable high harmonic generation via soliton dynamics[J]. Optics Letters, 42, 1768-1771(2017).
[130] Campbell C J, Radnaev A G, Kuzmich A. Wigner crystals of 229Th for optical excitation of the nuclear isomer[J]. Physical Review Letters, 106, 223001(2011).
[131] Berengut J C, Dzuba V A, Flambaum V V et al. Electron-hole transitions in multiply charged ions for precision laser spectroscopy and searching for variations in α[J]. Physical Review Letters, 106, 210802(2011).
[132] Zheng L, Liu H, Wang H B et al. Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet[J]. Acta Physica Sinica, 69, 224203(2020).
[133] Jones R J, Thomann I, Ye J. Precision stabilization of femtosecond lasers to high-finesse optical cavities[J]. Physical Review A, 69, 051803(2004).
[134] Jones R J, Moll K D, Thorpe M J et al. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity[J]. Physical Review Letters, 94, 193201(2005).
Get Citation
Copy Citation Text
Ji Wang, Kun Zhao. Research Progress in Generation and Spectral Technology of High‑Repetition‑Rate Extreme‑Ultraviolet‑Light Sources[J]. Chinese Journal of Lasers, 2024, 51(7): 0701002
Category: laser devices and laser physics
Received: Dec. 11, 2023
Accepted: Feb. 5, 2024
Published Online: Mar. 29, 2024
The Author Email: Kun Zhao (zhaokun@iphy.ac.cn)
CSTR:32183.14.CJL231498