Microelectronics, Volume. 51, Issue 3, 382(2021)

Research Advancement on Interface Passivation of SiC MOSFETs

ZHU Hao1,2, ZHANG Jing1, LI Pengfei1, and YUAN Shu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(32)

    [1] [1] MORKOC H, STRITE S S, GAO G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies [J]. J Appl Phys, 1994, 76(3): 1363-1398.

    [2] [2] SLACK G A. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond [J]. J Appl Phys, 1964, 35(12): 3460-3466.

    [3] [3] VEMULAPATI U R, MIHAILA A, MINAMISAWA R A, et al. Simulation and experimental results of 3.3 kV cross switch "Si-IGBT and SiC-MOSFET" hybrid [C] // 28th IEEE ISPSD. Prague, Czech Republic. 2016: 163-166.

    [5] [5] HARADA S, SUZUKI S, SENZAKI J, et al. High channel mobility in normally-off 4H-SiC buried channel MOSFETs [J]. IEEE Elec Dev Lett, 2002, 22(6): 272-274.

    [7] [7] YAMAGISHI Y,CHO Y. High resolution observation of subsurface defects at SiO2/4H-SiC interfaces by local deep level transient spectroscopy based on time-resolved scanning nonlinear dielectric microscopy [C] // IEEE IRPS. Monterey, CA, USA. 2019: 1-4.

    [8] [8] CHEN X D, DHAR S, SMITH T I, et al. Electron capture and emission properties of interface states in thermally oxidized and NO-annealed SiO2/4H-SiC [J]. J Appl Phys, 2008, 103(3): 241-427.

    [9] [9] YANO H, HATAYAMA T, URAOKA Y, et al.High temperature NO annealing of deposited SiO2 and SiON films on N-type 4H-SiC [J]. Mater Sci Forum, 2005(483): 685-688.

    [10] [10] SIDDIQUI A, ELGABRA H, SINGH S, et al. The current status and the future prospects of surface passivation in 4H-SiC transistors [J]. IEEE Trans Dev Mater Reliab, 2016, 16(3): 419-428.

    [12] [12] OKAMOTO D, YANO H, HIRATA K, et al. Improved inversion channel mobility in 4H-SiC MOSFETs on Si face utilizing phosphorus-doped gate oxide [J]. IEEE Elec Dev Lett, 2010, 31(7): 710-712.

    [13] [13] SHARMA Y K, AHYI A C, SMITH T I, et al. Phosphorous passivation of the SiO2/4H-SiC interface [J]. Sol Sta Elec, 2012, 68(1): 103-107.

    [14] [14] RONG H, SHARMA Y, MAWBY P. Combined N2O and phosphorus passivations for the 4H-SiC/SiO2 interface with oxide grown at 1400 ℃ [C] // IEEE ECSCRM. Halkidiki, Greece. 2016: 1-1.

    [15] [15] AFANAS’EV V V, BASSLER M, PENSL G, et al. Band offsets and electronic structure of SiC/SiO2 interfaces [J]. J Appl Phys, 1996, 79(6): 3108-3114.

    [16] [16] FUKUDA K, SUZUKI S, TANAKA T, et al. Reduction of interface-state density in 4H-SiC n-type metal-oxide-semiconductor structures using high-temperature hydrogen annealing [J]. Appl Phys Lett, 2000, 76(12): 1585-1587.

    [17] [17] OKAMOTO D, SOMETANI M, HARADA S, et al. Improved channel mobility in 4H-SiC MOSFETs by boron passivation [J]. IEEE Elec Dev Lett, 2014, 35(12): 1176-1178.

    [18] [18] FIORENZA P, GIANNAZZO F, VIVONA M, et al. SiO2/4H-SiC interface doping during post-deposition-annealing of the oxide in N2O or POCl3 [J]. Appl Phys Lett, 2013, 103(15): 223001-S1856.

    [19] [19] SIDDIQUI A, ELGABRA H, SINGH S. The current status and the future prospects of surface passivation in 4H-SiC transistors [J]. IEEE Trans Dev Mater Reliab, 2016, 16(3): 419-428.

    [20] [20] LIPKIN L A, PALMOUR J W. Improved oxidation procedures for reduced SiO2/SiC defects [J]. J Elec Mater, 1996, 25(5): 909-915.

    [21] [21] AHSAN A K M, SCHRODER D K. Impact of post-oxidation annealing on low-frequency noise, threshold voltage, and subthreshold swing of p-channel MOSFETs [J]. IEEE Elec Dev Lett, 2004, 25(4): 211-213.

    [22] [22] LEE D, KIM C, LEE H, et al. Improving the barrier height uniformity of 4H-SiC Schottky barrier diodes by nitric oxide post-oxidation annealing [J]. IEEE Elec Dev Lett, 2014, 35(8): 868-870.

    [23] [23] MORALES-ACEVEDO A, SANTANA G, CARRILLO-LOPEZ J. Thermal oxidation of silicon in nitrous oxide at high pressures [J]. J Electrochem Society, 2001, 148(10): 200-202.

    [24] [24] LI H F, DIMITRIJEV S, HARRISON H B, et al. Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing [J]. Appl Phys Lett, 1997, 70(15): 2028-2030.

    [25] [25] FUJIHIRA K, TARUI Y, OHTSUKA K, et al. Effects of N2O anneal on channel mobility of 4H-SiC MOSFET and gate oxide reliability [J]. Mater Sci Forum, 2005(483): 697-700.

    [26] [26] CABELLO M, SOLER V, MESTRES N, et al. Improved 4H-SiC N-MOSFET interface passivation by combining N2O oxidation with boron diffusion [C] // IEEE ECSCRM. Halkidiki, Greece. 2016.

    [27] [27] ZHU X G, AHYI A C, LI M Y, et al. The effect of nitrogen plasma anneals on interface trap density and channel mobility for 4H-SiC MOS devices [J]. Sol Sta Elec, 2011, 57(1): 76-79.

    [28] [28] CHUNG G, TIN C C, WILLIAMS J R, et al. Effects of anneals in ammonia on the interface trap density near the band edges in 4H-silicon carbide metal-oxide-semiconductor capacitors [J]. Appl Phys Lett, 2000, 77(22): 3601-3603.

    [29] [29] LODZINSKI M, TOMAS A P, GUY O J, et al. Characterization of MOS interfaces on protected and un-protected 4H-SiC surfaces [C] // 26th Int Conf Microelec. Nis, Serbia. 2008: 541-543.

    [30] [30] HANEY S, AGARWAL A. The effects of implant activation anneal on the effective inversion layer mobility of 4H-SiC MOSFETs [J]. J Elec Mater, 2008, 37(5): 666-671.

    [31] [31] NAIK H, TANG K, CHOW T P. Effect of graphite cap for implant activation on inversion channel mobility in 4H-SiC MOSFETs [J]. Mater Sci Forum, 2009(615): 773-776.

    [32] [32] LICHTENWALNER D J, CHENG L, DHAR S, et al. High mobility 4H-SiC (0001) transistors using alkali and alkaline earth interface layers [J]. Appl Phys Lett, 2014, 105(18): 176-291.

    [33] [33] JIE J M, ZHANG Y, TANG X. Study on interfacial properties of SiC MOS with Barium [C] // 1st WiPDA Asia. Xi'an, China. 2018: 229-232.

    [34] [34] GRIEB M, NOBORIO M, PETERS D, et al. Electrical characterization of MOS structures with deposited oxides annealed in N2O or NO [J]. Mater Sci Forum, 2009(615): 521-524.

    [35] [35] MIYAKE H, KIMOTO T, SUDA J. Improvement of current gain in 4H-SiC BJTs by surface passivation with deposited oxides nitrided in or NO [J]. IEEE Elec Dev Lett, 2011, 32(3): 285-287.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Hao, ZHANG Jing, LI Pengfei, YUAN Shu. Research Advancement on Interface Passivation of SiC MOSFETs[J]. Microelectronics, 2021, 51(3): 382

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 13, 2020

    Accepted: --

    Published Online: Mar. 11, 2022

    The Author Email:

    DOI:10.13911/j.cnki.1004-3365.200477

    Topics