Journal of Synthetic Crystals, Volume. 54, Issue 5, 721(2025)

Research Progress on β-Ga2O3 Radio Frequency Power Devices

Min ZHOU, Hong ZHOU*, Jincheng ZHANG, and Yue HAO
References(83)

[2] GIACOMO M. Solid state RF amplifiers for accelerator applications(09).

[3] FORMICONE G, BURGER J, CUSTER J et al. Solid-state RF power amplifiers for ISM CW applications based on 100 V GaN technology, 33-36(2016).

[4] FORMICONE G, CUSTER J, BURGER J. First demonstration of a GaN-SiC RF technology operating above 100 V in S-band(2017).

[5] FORMICONE G F. A highly manufacturable 75-150 VDC GaN-SiC RF technology for radars and particle accelerators. IEEE Transactions on Semiconductor Manufacturing, 31, 440-446(2018).

[6] HIGASHIWAKI M, SASAKI K, MURAKAMI H et al. Recent progress in Ga2O3 power devices. Semiconductor Science and Technology, 31(2016).

[7] GELLER S. Crystal structure of β‐Ga2O3. The Journal of Chemical Physics, 33, 676-684(1960).

[8] ÅHMAN J, SVENSSON G, ALBERTSSON J. A reinvestigation of β-gallium oxide. Acta Crystallographica Section C, 52, 1336-1338(1996).

[9] UEDA N, HOSONO H, WASEDA R et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Applied Physics Letters, 71, 933-935(1997).

[10] MOCK A, KORLACKI R, BRILEY C et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3. Physical Review B, 96, 245205(2017).

[11] MAIMON O, LI Q L. Progress in gallium oxide field-effect transistors for high-power and RF applications. Materials, 16, 7693(2023).

[12] GREEN B, MOORE K, HILL D et al. GaN RF device technology and applications, present and future, 101-106(2013).

[13] ZHOU H, YAN Q L, ZHANG J C et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination. IEEE Electron Device Letters, 40, 1788-1791(2019).

[14] LIN C H, YUDA Y, WONG M H et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation. IEEE Electron Device Letters, 40, 1487-1490(2019).

[15] HU Z Z, LV Y J, ZHAO C Y et al. Beveled fluoride plasma treatment for vertical β-Ga2O3 Schottky barrier diode with high reverse blocking voltage and low turn-on voltage. IEEE Electron Device Letters, 41, 441-444(2020).

[16] ZHANG Y N, ZHANG J C, FENG Z Q et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing. IEEE Transactions on Electron Devices, 67, 3948-3953(2020).

[17] HAN Z, JIAN G Z, ZHOU X Z et al. 2.7 kV low leakage vertical PtOx/β-Ga2O3 Schottky barrier diodes with self-aligned mesa termination. IEEE Electron Device Letters, 44, 1680-1683(2023).

[18] DONG P F, ZHANG J C, YAN Q L et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC. IEEE Electron Device Letters, 43, 765-768(2022).

[19] KONISHI K, GOTO K, MURAKAMI H et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Applied Physics Letters, 110, 103506(2017).

[20] YANG J C, REN F, TADJER M et al. 2 300 V reverse breakdown voltage Ga2O3 Schottky rectifiers. ECS Journal of Solid State Science and Technology, 7, Q92-Q96(2018).

[21] HU Z Y, NOMOTO K, LI W S et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Letters, 39, 869-872(2018).

[22] ROY S, BHATTACHARYYA A, RANGA P et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm2. IEEE Electron Device Letters, 42, 1140-1143(2021).

[23] QIN Y, XIAO M, PORTER M et al. 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 ℃. IEEE Electron Device Letters, 44, 1268-1271(2023).

[24] LV Y J, WANG Y G, FU X C et al. Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga’s figure of merit of 0.85 GW/cm or a 5 A/700 V handling capabilities. IEEE Transactions on Power Electronics, 36, 6179-6182(2021).

[25] YAN Q L, GONG H H, ZHANG J C et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2. Applied Physics Letters, 118, 122102(2021).

[26] ZHANG J C, DONG P F, DANG K et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nature Communications, 13, 3900(2022).

[27] YAN Q L, GONG H H, ZHOU H et al. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination. Applied Physics Letters, 120(2022).

[28] WANG C L, YAN Q L, ZHANG C Q et al. β-Ga₂O₃ lateral Schottky barrier diodes with > 10 kV breakdown voltage and anode engineering. IEEE Electron Device Letters, 44, 1684-1687(2023).

[29] WONG M H, SASAKI K, KURAMATA A et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Letters, 37, 212-215(2016).

[30] ZENG K, VAIDYA A, SINGISETTI U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Letters, 39, 1385-1388(2018).

[31] LV Y J, ZHOU X Y, LONG S B et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2. IEEE Electron Device Letters, 40, 83-86(2019).

[32] TETZNER K, BAHAT TREIDEL E, HILT O et al. Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit. IEEE Electron Device Letters, 40, 1503-1506(2019).

[33] LV Y J, LIU H Y, ZHOU X Y et al. Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2. IEEE Electron Device Letters, 41, 537-540(2020).

[34] FENG Z Q, CAI Y C, LI Z et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Applied Physics Letters, 116, 243503(2020).

[35] KALARICKAL N K, XIA Z B, HUANG H L et al. β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm. IEEE Electron Device Letters, 42, 899-902(2021).

[36] WANG C L, GONG H H, LEI W N et al. Demonstration of the p-NiOx/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron,sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Letters, 42, 485-488(2021).

[37] WANG C L, YAN Q L, SU C X et al. Demonstration of the β-Ga₂O₃ MOS-JFETs with suppressed gate leakage current and large gate swing. IEEE Electron Device Letters, 44, 380-383(2023).

[38] CHABAK K D, MCCANDLESS J P, MOSER N A et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs. IEEE Electron Device Letters, 39, 67-70(2018).

[39] CHABAK K D, MOSER N, GREEN A J et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Applied Physics Letters, 109, 213501(2016).

[40] LIU H Y, WANG Y G, LV Y J et al. 10-kV lateral β-Ga₂O₃ MESFETs with B ion implanted planar isolation. IEEE Electron Device Letters, 44, 1048-1051(2023).

[41] MOSER N, LIDDY K, ISLAM A et al. Toward high voltage radio frequency devices in β-Ga2O3. Applied Physics Letters, 117, 242101(2020).

[42] ZHOU H. GaN MOS devices with atomic layer epitaxy dielectric and its next generation high power beta-Ga2O3 on insulators FETs(2017).

[43] TOMM Y, REICHE P, KLIMM D et al. Czochralski grown Ga2O3 crystals. Journal of Crystal Growth, 220, 510-514(2000).

[44] GALAZKA Z, UECKER R, IRMSCHER K et al. Czochralski growth and characterization of β-Ga2O3 single crystals. Crystal Research and Technology, 45, 1229-1236(2010).

[45] GALAZKA Z, IRMSCHER K, UECKER R et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. Journal of Crystal Growth, 404, 184-191(2014).

[46] GALAZKA Z, UECKER R, KLIMM D et al. Scaling-up of bulk β-Ga2O3 single crystals by the czochralski method. ECS Journal of Solid State Science and Technology, 6, Q3007-Q3011(2017).

[47] HIGASHIWAKI M, JESSEN G H. Guest editorial: the dawn of gallium oxide microelectronics. Applied Physics Letters, 112(2018).

[48] FU B, MU W X, ZHANG J et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method. CrystEngComm, 22, 5060-5066(2020).

[49] FU B, JIAN G Z, MU W X et al. Crystal growth and design of Sn-doped β-Ga2O3: morphology, defect and property studies of cylindrical crystal by EFG. Journal of Alloys and Compounds, 896, 162830(2022).

[50] HOSHIKAWA K, OHBA E, KOBAYASHI T et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. Journal of Crystal Growth, 447, 36-41(2016).

[51] HOSHIKAWA K, KOBAYASHI T, MATSUKI Y et al. 2-inch diameter (100) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air. Journal of Crystal Growth, 545, 125724(2020).

[52] OHBA E, KOBAYASHI T, TAISHI T et al. Growth of (100), (010) and (001) β-Ga2O3 single crystals by vertical Bridgman method. Journal of Crystal Growth, 556, 125990(2021).

[53] ZHANG J G, LI B, XIA C T et al. Growth and spectral characterization of β-Ga2O3 single crystals. Journal of Physics and Chemistry of Solids, 67, 2448-2451(2006).

[54] ZHANG J G, LI B, XIA C T et al. Single crystal β-Ga2O3∶ Cr grown by floating zone technique and its optical properties. Science in China Series E: Technological Sciences, 50, 51-56(2007).

[55] ALAJLOUNI S, TADJER M J et al. High performance: Ga2O3 nano-membrane field effect transistors on a high thermal conductivity diamond substrate. IEEE Journal of the Electron Devices Society, 7, 914-918(2019).

[56] XU W H, YOU T G, MU F W et al. Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate. ACS Applied Electronic Materials, 4, 494-502(2022).

[57] LIN C H, HATTA N, KONISHI K et al. Single-crystal-Ga2O3/polycrystalline-SiC bonded substrate with low thermal and electrical resistances at the heterointerface. Applied Physics Letters, 114(2019).

[58] XU W H, ZHANG Y H, HAO Y et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process. 12, 4-11(5).

[59] XU W H, YOU T G, WANG Y B et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC. Fundamental Research, 1, 691-696(2021).

[60] XIAO M, WANG B Y, LIU J C et al. Packaged Ga2O3 Schottky rectifiers with over 60-a surge current capability. IEEE Transactions on Power Electronics, 36, 8565-8569(2021).

[61] GREEN A J, CHABAK K D, BALDINI M et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Letters, 38, 790-793(2017).

[62] SINGH M, CASBON M A, UREN M J et al. Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Letters, 39, 1572-1575(2018).

[63] CHABAK K D, WALKER D E, GREEN A J et al. Sub-micron gallium oxide radio frequency field-effect transistors, 1-3(2018).

[64] XIA Z B, XUE H, JOISHI C et al. β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz. IEEE Electron Device Letters, 40, 1052-1055(2019).

[65] KAMIMURA T, NAKATA Y, HIGASHIWAKI M. Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors. Applied Physics Letters, 117, 253501(2020).

[66] MOSER N A, ASEL T, LIDDY K J et al. Pulsed power performance of β-Ga2O3 MOSFETs at L-band. IEEE Electron Device Letters, 41, 989-992(2020).

[67] LV Y J, LIU H Y, WANG Y G et al. Oxygen annealing impact on β-Ga2O3 MOSFETs: improved pinch-off characteristic and output power density. Applied Physics Letters, 117, 133503(2020).

[68] YU X X, GONG H H, ZHOU J J et al. RF performance enhancement in sub-μm scaled β-Ga2O3 tri-gate FinFETs. Applied Physics Letters, 121(2022).

[69] YU X X, GONG H H, ZHOU J J et al. High-voltage β-Ga2O3 RF MOSFETs with a shallowly-implanted 2DEG-like channel. IEEE Electron Device Letters, 44, 1060-1063(2023).

[70] SAHA C N, VAIDYA A, BHUIYAN A F M A U et al. Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX. Applied Physics Letters, 122, 182106(2023).

[71] SAHA C N, VAIDYA A, NIPU N J et al. Thin channel Ga2O3 MOSFET with 55 GHz fMAX and >100 V breakdown. Applied Physics Letters, 125(2024).

[72] WANG X C, LU X L, HE Y L et al. Quasi-2D high mobility channel E-mode β-Ga2O3 MOSFET with Johnson FOM of 7.56 THz·V. Applied Physics Letters, 125(2024).

[73] YU X X, XU W H, WANG Y B et al. Heterointegrated Ga2O3-on-SiC RF MOSFETs with fT/fmax of 47/51 GHz by ion-cutting process. IEEE Electron Device Letters, 44, 1951-1954(2023).

[74] ZHOU M, ZHOU H, HUANG S et al. 1.1 A/mm 1.1 A/mm ß-Ga2O3-on-SiC RF MOSFETs with 2.3 W/mm Pout and 30% PAE at 2 GHz and fT/fmax of 27.6/57 GHz, 1-4(2023).

[75] ZHOU M, ZHOU H, MENGWEI S et al. 71 GHz-fmax β-Ga2O3-on-SiC RF power MOSFETs with record Pout=3.1 W/mm and PAE=50.8% at 2 GHz, Pout=2.3 W/mm at 4 GHz, and low microwave noise figure, 1-2(2024).

[76] ZHANG Y, NEAL A, XIA Z et al. Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures. Applied Physics Letters, 112(2018).

[77] ZHANG Y W, XIA Z B, MCGLONE J et al. Evaluation of low-temperature saturation velocity in β-(AlxGa1-x)2O3/Ga2O3 modulation-doped field-effect transistors. IEEE Transactions on Electron Devices, 66, 1574-1578(2019).

[78] JESSEN G H, FITCH R C, GILLESPIE J K et al. Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices. IEEE Transactions on Electron Devices, 54, 2589-2597(2007).

[79] SHINOHARA K, REGAN D, MILOSAVLJEVIC I et al. Electron velocity enhancement in laterally scaled GaN DH-HEMTs with fT of 260 GHz. IEEE Electron Device Letters, 32, 1074-1076(2011).

[80] VAIDYA A, SAHA C N, SINGISETTI U. Enhancement mode β-(AlxGa1-x)2O3/Ga2O3 heterostructure FET (HFET) with high transconductance and cutoff frequency. IEEE Electron Device Letters, 42, 1444-1447(2021).

[81] SAHA C N, VAIDYA A, SINGISETTI U. Temperature dependent pulsed IV and RF characterization of β-(AlxGa1-x)2O3/Ga2O3 hetero-structure FET with ex situ passivation. Applied Physics Letters, 120, 7(2022).

[82] OHTSUKI T, KAMIMURA T, HIGASHIWAKI M. Suppression of drain current leakage and short-channel effect in lateral Ga2O3 RF MOSFETs using (AlxGa1-x)2O3 back-barrier. IEEE Electron Device Letters, 44, 1829-1832(2023).

[83] DHEENAN A V, MCGLONE J F, KALARICKAL N K et al. β-Ga2O3 MESFETs with insulating Mg-doped buffer grown by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 121, 113503(2022).

[84] ATMACA G, CHA H Y. Enhancement mode β-(Al0.19Ga0.81)2O3/Ga2O3 HFETs with superlattice back-barrier layer. Micro and Nanostructures, 189, 207802(2024).

Tools

Get Citation

Copy Citation Text

Min ZHOU, Hong ZHOU, Jincheng ZHANG, Yue HAO. Research Progress on β-Ga2O3 Radio Frequency Power Devices[J]. Journal of Synthetic Crystals, 2025, 54(5): 721

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Mar. 19, 2025

Accepted: --

Published Online: Jul. 2, 2025

The Author Email: Hong ZHOU (hongzhou@xidian.edu.cn)

DOI:10.16553/j.cnki.issn1000-985x.2025.0054

Topics