Laser & Optoelectronics Progress, Volume. 59, Issue 14, 1415024(2022)
Combinatorial Reconstruction and Segmentation of Magnetic Resonance Image Using Teacher Forcing
[7] Wang X Q, Yang F, Cao B et al. Application of convolution neural network in diagnosis of thyroid nodules[J]. Laser & Optoelectronics Progress, 59, 0810005(2022).
[11] Zhang H, Qiu D W, Feng Y B et al. Improved U-Net models and its applications in medical image segmentation: a review[J]. Laser & Optoelectronics Progress, 59, 0200005(2022).
[14] Zhang D Q, Pang Y W, Liu X H. Reconstruction of dual-domain crossed magnetic resonance images based on codec network[J]. Laser & Optoelectronics Progress, 59, 1210014(2022).
[15] Duan J Z, He X X, Liu C et al. Method of magnetic resonance imaging reconstruction based on Lp-norm joint total variation[J]. Laser & Optoelectronics Progress, 58, 2411001(2021).
[16] Mou H W, Guo Y, Quan X H et al. Magnetic resonance imaging brain tumor image segmentation based on improved U-Net[J]. Laser & Optoelectronics Progress, 58, 041022(2021).
[18] Zhang H L, Li Q, Guan X. An improved three-dimensional dual-path brain tumor image segmentation network[J]. Acta Optica Sinica, 41, 0310002(2021).
Get Citation
Copy Citation Text
Yu Zhang, Haoran Li, Cheng Li, Fei Li, Shanshan Wang. Combinatorial Reconstruction and Segmentation of Magnetic Resonance Image Using Teacher Forcing[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415024
Category: Machine Vision
Received: Dec. 15, 2021
Accepted: Feb. 21, 2022
Published Online: Jul. 1, 2022
The Author Email: Shanshan Wang (ss.wang@siat.ac.cn)