Laser & Optoelectronics Progress, Volume. 59, Issue 14, 1415024(2022)

Combinatorial Reconstruction and Segmentation of Magnetic Resonance Image Using Teacher Forcing

Yu Zhang1,2, Haoran Li1,2, Cheng Li1, Fei Li1, and Shanshan Wang1、*
Author Affiliations
  • 1Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, Guangdong , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(11)
    Framework of the proposed multi-task MRI method
    The proposed improved teacher forcing scheme (TFS)
    Examples of 1D random K-space mask with different acceleration factors. (a) Mask under 4× acceleration; (b) mask under 8× acceleration
    Examples of lesion segmentation results and image reconstruction error maps of samples on the ATLAS dataset (acceleration factor is 4), from left to right is annotation, ours, SegNetMRI, U-Net (top) and D5C5 (bottom), SynNet, LI-Net, SERANet
    Violin-plot of the segmentation results on the ATLAS dataset
    Boxplot of the segmentation results on the ATLAS dataset
    Examples of lesion segmentation results and image reconstruction error maps of samples on the in-house dataset (acceleration factor is 4), from left to right is label, ours, SegNetMRI, U-Net (top) and D5C5 (bottom)
    • Table 1. Experimental results of different methods on the ATLAS dataset (acceleration factor is 4), bold letters indicate the best result

      View table

      Table 1. Experimental results of different methods on the ATLAS dataset (acceleration factor is 4), bold letters indicate the best result

      MethodDicePrecisionRecallPSNR /dBSSIM
      SynNet0.331±0.0550.473±0.0900.318±0.065
      LI-Net0.338±0.0600.494±0.0950.303±0.060
      SERANet0.353±0.0720.682±0.1260.280±0.060
      SegNetMRI0.224±0.0670.618±0.1640.156±0.03428.22±0.7460.950±0.00600
      U-Net0.451±0.0700.641±0.0850.409±0.075
      D5C528.78±0.6890.958±0.00005
      Ours0.515±0.0670.665±0.0790.490±0.07728.88±0.7630.959±0.00005
    • Table 2. Experimental results of different methods on the ATLAS dataset (acceleration factor is 8)

      View table

      Table 2. Experimental results of different methods on the ATLAS dataset (acceleration factor is 8)

      MethodDicePrecisionRecallPSNR /dBSSIM
      SynNet0.311±0.0630.506±0.0980.268±0.057
      LI-Net0.312±0.0560.458±0.0950.288±0.059
      SERANet0.303±0.0800.582±0.1510.245±0.065
      SegNetMRI0.081±0.0190.368±0.1970.050±0.00922.96±0.6780.887±0.0001
      U-Net0.420±0.0690.571±0.0930.393±0.075
      D5C522.98±0.6660.888±0.0002
      Ours0.445±0.0730.628±0.0950.407±0.07723.04±0.6100.892±0.0002
    • Table 3. Ablation study on the ATLAS dataset of effectiveness evaluation of the proposed teacher forcing scheme (acceleration factor is 4)

      View table

      Table 3. Ablation study on the ATLAS dataset of effectiveness evaluation of the proposed teacher forcing scheme (acceleration factor is 4)

      TFSDicePrecisionRecallPSNR /dBSSIM
      0.494±0.0710.636±0.1350.462±0.06728.78±0.7320.957±0.00005
      0.515±0.0670.665±0.0790.490±0.07728.88±0.7630.959±0.00005
    • Table 4. Experimental results of different methods on the in-house dataset (acceleration factor is 4)

      View table

      Table 4. Experimental results of different methods on the in-house dataset (acceleration factor is 4)

      MethodDicePrecisionRecallPSNR /dBSSIM
      SegNetMRI0.841±0.0040.814±0.0240.859±0.03332.52±0.0570.983±0.006
      U-Net0.854±0.0150.830±0.0070.789±0.107
      D5C532.49±0.0440.984±0.008
      Ours0.864±0.0010.880±0.0110.868±0.03132.65±0.0130.986±0.001
    Tools

    Get Citation

    Copy Citation Text

    Yu Zhang, Haoran Li, Cheng Li, Fei Li, Shanshan Wang. Combinatorial Reconstruction and Segmentation of Magnetic Resonance Image Using Teacher Forcing[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415024

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 15, 2021

    Accepted: Feb. 21, 2022

    Published Online: Jul. 1, 2022

    The Author Email: Shanshan Wang (ss.wang@siat.ac.cn)

    DOI:10.3788/LOP202259.1415024

    Topics