Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 546(2025)

Design and realization of broadband spectrum measurement based on Rydberg atoms superheterodyne

HAN Shunli*, LIU Guixiang, CHAI Jiwang, ZHANG Yingyun, and LIU Yang
Author Affiliations
  • st Institute ofChina Electronic Technology Group Corporation, Qingdao 266555, China
  • show less
    References(35)

    [1] Wang S B, Dou M H, Wu Y C et al. Research progress of distributed quantum computing[J]. Chinese Journal of Quantum Electronics, 41, 1-25(2024).

    [2] Zhang H, Ma Y, Liao K Y et al. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems[J]. Science Bulletin, 69, 1515-1535(2024).

    [3] He Q, Li D, Gu L et al. Research progress in radio technology based on Rydberg atoms[J]. High Power Laser and Particle Beams, 36, 131-149(2024).

    [4] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [5] Jau Y Y, Carter T. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz[J]. Physical Review Applied, 13, 054034(2020).

    [6] Li L, Jiao Y C, Hu J L et al. Super low-frequency electric field measurement based on Rydberg atoms[J]. Optics Express, 31, 29228-29234(2023).

    [7] Miller S A, Anderson D A, Raithel G. Radio-frequency-modulated Rydberg states in a vapor cell[J]. New Journal of Physics, 18, 053017(2016).

    [8] Liu B, Zhang L H, Liu Z K et al. Highly sensitive measurement of a megahertz RF electric field with a Rydberg-atom sensor[J]. Physical Review Applied, 18, 014045(2022).

    [9] Brown R C, Kayim B, Viray M A et al. Very-high- and ultrahigh-frequency electric-field detection using high angular momentum Rydberg states[J]. Physical Review A, 107, 052605(2023).

    [10] Du Y J, Lyu Z Y, Hu W D et al. Atomic‑antenna‑based quantum precision measurement of low‑frequency electric fields and applications[J]. Chinese Journal of Quantum Electronics, 41, 701-712(2024).

    [11] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).

    [12] Ding D S, Liu Z K, Shi B S et al. Enhanced metrology at the critical point of a many-body Rydberg atomic system[J]. Nature Physics, 18, 1447-1452(2022).

    [13] Wu K D, Xie C, Li C F et al. Nonlinearity-enhanced continuous microwave detection based on stochastic resonance[J]. Science Advances, 10, eado8130(2024).

    [14] Hu J L, Jiao Y C, He Y H et al. Improvement of response bandwidth and sensitivity of Rydberg receiver using multi-channel excitations[J]. EPJ Quantum Technology, 10, 51(2023).

    [15] Kumar S, Fan H Q, Kübler H et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).

    [16] Endo M, Schibli T R. Residual phase noise suppression for Pound-Drever-Hall cavity stabilization with an electro-optic modulator[J]. OSA Continuum, 1, 116-123(2018).

    [17] Kumar S, Fan H Q, Kübler H et al. Atom-Based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).

    [18] Tu H T, Liao K Y, Wang H L et al. Approaching the standard quantum limit of a Rydberg-atom microwave electrometer[J]. Science Advances, 10, eads0683(2024).

    [19] Gong T, Shi S, Ji Z H et al. Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms[J]. Chinese Physics B, 32, 103202(2023).

    [20] Borówka S, Pylypenko U, Mazelanik M et al. Continuous wideband microwave-to-optical converter based on room-temperature Rydberg atoms[J]. Nature Photonics, 18, 32-38(2024).

    [21] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [22] Cox K C, Meyer D H, Fatemi F K et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical Review Letters, 121, 110502(2018).

    [23] Jiao Y C, Han X X, Fan J B et al. Atom-based receiver for amplitude-modulated baseband signals in high-frequency radio communication[J]. Applied Physics Express, 12, 126002(2019).

    [24] Song Z F, Liu H P, Liu X C et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics Express, 27, 8848-8857(2019).

    [25] Holloway C L, Simons M T, Gordon J A et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE Antennas and Wireless Propagation Letters, 18, 1853-1857(2019).

    [26] Holloway C L, Gordon J A, Schwarzkopf A et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).

    [27] Holloway C L, Simons M T, Gordon J A et al. Atom-based RF electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging[J]. IEEE Transactions on Electromagnetic Compatibility, 59, 717-728(2017).

    [28] Fan H Q, Kumar S, Daschner R et al. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells[J]. Optics Letters, 39, 3030-3033(2014).

    [29] Wade C G, Šibalić N, de Melo N R et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).

    [30] Chen S, Reed D J, Mackellar A R et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 9, 485-491(2022).

    [31] Yang W G, Jing M Y, Zhang H et al. Radio frequency electric field-enhanced sensing based on the Rydberg atom-based superheterodyne receiver[J]. Optics Letters, 49, 2938-2941(2024).

    [32] Šibalić N, Pritchard J D, Adams C S et al. ARC: An open-source library for calculating properties of alkali Rydberg atoms[J]. Computer Physics Communications, 220, 319-331(2017).

    [33] Meyer D H, Castillo Z A, Cox K C et al. Assessment of Rydberg atoms for wideband electric field sensing[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 034001(2020).

    [34] Cai M H, Xu Z S, You S H et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250(2022).

    [35] Chai J W, Liu Y, Zhang Y Y et al. Continuous-frequency electric field measurements of D-band terahertz wave based on Rydberg atoms[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 46, 20(2025).

    Tools

    Get Citation

    Copy Citation Text

    Shunli HAN, Guixiang LIU, Jiwang CHAI, Yingyun ZHANG, Yang LIU. Design and realization of broadband spectrum measurement based on Rydberg atoms superheterodyne[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 546

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue on...

    Received: Dec. 31, 2024

    Accepted: --

    Published Online: Jul. 31, 2025

    The Author Email: Shunli HAN (hsl@ei41.com)

    DOI:10.3969/j.issn.1007-5461.2025.04.010

    Topics