Laser & Optoelectronics Progress, Volume. 58, Issue 10, 1011012(2021)

Research Progress of Super-Resolution Fluorescence Microscopy Based on Quantum Correlation

Wenwen Li1,2 and Zhongyang Wang1、*
Author Affiliations
  • 1Center for Fundamental Interdisciplinary Research, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 2School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(84)

    [1] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] Turkowyd B, Virant D, Endesfelder U. From single molecules to life: microscopy at the nanoscale[J]. Analytical and Bioanalytical Chemistry, 408, 6885-6911(2016).

    [5] Aspelmeier T, Egner A, Munk A. Modern statistical challenges in high-resolution fluorescence microscopy[J]. Annual Review of Statistics and Its Application, 2, 163-202(2015).

    [8] Hofmann M, Eggeling C, Jakobs S et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. PNAS, 102, 17565-17569(2005).

    [10] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [11] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [14] Min G. Principles of three-dimensional imaging in confocal microscopes[M]. Singapore: World Scientific, 15-45(1996).

    [15] Minsky M. Microscopy apparatus: US3013467[P](1961).

    [16] Harke B, Keller J, Ullal C K et al. Resolution scaling in STED microscopy[J]. Optics Express, 16, 4154-4162(2008).

    [20] Cole R. Live-cell imaging[J]. Cell Adhesion & Migration, 8, 452-459(2014).

    [21] Mandel J, Wolf E. Optical coherence and quantum optics[M], 430-803(1995).

    [23] Messin G, Hermier J P, Giacobino E et al. Bunching and antibunching in the fluorescence of semiconductor nanocrystals[J]. Optics Letters, 26, 1891-1893(2001).

    [24] Berchera I R, Degiovanni I P. Quantum imaging with sub-Poissonian light: challenges and perspectives in optical metrology[J]. Metrologia, 56, 024001(2019).

    [25] Genovese M. Real applications of quantum imaging[J]. Journal of Optics, 18, 073002(2016).

    [26] Thiel C, Bastin T, von Zanthier v et al. Sub-Rayleigh quantum imaging using single-photon sources[J]. Physical Review A, 80, 013820(2009).

    [27] Giovannetti V, Lloyd S, Maccone L et al. Publisher’s note: sub-Rayleigh-diffraction-bound quantum imaging[J]. Physical Review A, 79, 039901(2009).

    [29] Taylor M A, Janousek J, Daria V et al. Biological measurement beyond the quantum limit[C]. //International Quantum Electronics Conference 2013, May 12-16, 2013, Munich Germany, IA_5_1(2013).

    [31] Samantaray N, Ruo-Berchera I, Meda A et al. Realization of the first sub-shot-noise wide field microscope[J]. Light, Science & Applications, 6, e17005(2017).

    [33] Brambilla E, Caspani L, Jedrkiewicz O et al. High-sensitivity imaging with multi-mode twinbeams[J]. Physical Review A, 77, 053807(2008).

    [35] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 5, 222-229(2011).

    [37] Lounis B, Orrit M. Single-photon sources[J]. Reports on Progress in Physics, 68, 1129-1179(2005).

    [38] Scheel S. Single-photon sources-an introduction[J]. Journal of Modern Optics, 56, 141-160(2009).

    [39] Polyakov S V, Migdall A L. Quantum radiometry[J]. Journal of Modern Optics, 56, 1045-1052(2009).

    [41] Häffner H, Roos C F, Blatt R. Quantum computing with trapped ions[J]. Physics Reports, 469, 155-203(2008).

    [48] Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature[J]. Nature, 407, 491-493(2000).

    [51] Kurtsiefer C, Mayer S, Zarda P et al. Stable solid-state source of single photons[J]. Physical Review Letters, 85, 290-293(2000).

    [56] Kubo R. Astochastic theory of line shape[M]. //Rice S, Hixon F P, Franck J, et al. Advances in chemical physics, 101-127(2007).

    [59] Classen A, von Zanthier J, Agarwal G S. Analysis of super-resolution via 3D structured illumination intensity correlation microscopy[J]. Optics Express, 26, 27492-27503(2018).

    [63] Classen A, von Zanthier J, Scully M O et al. Superresolution via structured illumination quantum correlation microscopy[J]. Optica, 4, 580-587(2017).

    [67] Kolobov M I. Quantum imaging[M](2007).

    [72] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [81] Yu H, Lu R, Han S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    Tools

    Get Citation

    Copy Citation Text

    Wenwen Li, Zhongyang Wang. Research Progress of Super-Resolution Fluorescence Microscopy Based on Quantum Correlation[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Apr. 3, 2021

    Accepted: Apr. 23, 2021

    Published Online: May. 28, 2021

    The Author Email: Zhongyang Wang (wangzy@sari.ac.cn)

    DOI:10.3788/LOP202158.1011012

    Topics