Chinese Journal of Lasers, Volume. 49, Issue 5, 0507201(2022)
Progress of Three-Dimensional, Label-Free Quantitative Imaging of Refractive Index in Biological Samples
[1] Stubbington M J T, Rozenblatt-Rosen O, Regev A et al. Single-cell transcriptomics to explore the immune system in health and disease[J]. Science, 358, 58-63(2017).
[2] Nitta N, Sugimura T, Isozaki A et al. Intelligent image-activated cell sorting[J]. Cell, 175, 266-276(2018).
[3] Fu L, Luo Q M. Progress and prospect of biomedical optical imaging[J]. Scientia Sinica Vitae, 50, 1222-1236(2020).
[4] Tuchin V V[M]. Tissue optics: light scattering methods and instruments for medical diagnosis(2015).
[5] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).
[6] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).
[7] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).
[8] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).
[9] Lord S J, Conley N R, Lee H L D et al. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells[J]. Journal of the American Chemical Society, 130, 9204-9205(2008).
[10] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).
[11] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).
[12] Schnell U, Dijk F, Sjollema K A et al. Immunolabeling artifacts and the need for live-cell imaging[J]. Nature Methods, 9, 152-158(2012).
[13] Devaney A J[M]. Mathematical foundations of imaging, tomography and wavefield inversion(2009).
[14] Liu P Y, Chin L K, Ser W et al. Cell refractive index for cell biology and disease diagnosis: past, present and future[J]. Lab on a Chip, 16, 634-644(2016).
[15] Bateman J B, Wagman J, Carstensen E L. Refraction and absorption of light in bacterial suspensions[J]. Kolloid-Zeitschrift Und Zeitschrift Für Polymere, 208, 44-58(1966).
[16] Song W Z, Zhang X M, Liu A Q et al. Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity[J]. Applied Physics Letters, 89, 203901(2006).
[17] Flynn R A, Shao B, Chachisvilis M et al. Two-beam optical traps: refractive index and size measurements of microscale objects[J]. Biomedical Microdevices, 7, 93-97(2005).
[18] Briers D, Duncan D D, Hirst E R et al. Laser speckle contrast imaging: theoretical and practical limitations[J]. Journal of Biomedical Optics, 18, 066018(2013).
[19] He H H, Liao R, Zeng N et al. Mueller matrix polarimetry: an emerging new tool for characterizing the microstructural feature of complex biological specimen[J]. Journal of Lightwave Technology, 37, 2534-2548(2019).
[20] Gao R J, Wang C H, Ning J X et al. Polarization microscopy imaging of biological cells based on Mueller matrix[J]. Laser & Optoelectronics Progress, 58, 1811023(2021).
[21] Saar B G, Freudiger C W, Reichman J et al. Video-rate molecular imaging in vivo with stimulated Raman scattering[J]. Science, 330, 1368-1370(2010).
[22] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 12, 578-589(2018).
[23] Zhang L, Zhao C H, Kang S B et al. Progress on methods of quantitative phase measurement and retrieval for biological cells[J]. Chinese Journal of Lasers, 45, 0207009(2018).
[24] Wang Z, Millet L, Mir M et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 19, 1016-1026(2011).
[25] Bhaduri B, Pham H, Mir M et al. Diffraction phase microscopy with white light[J]. Optics Letters, 37, 1094-1096(2012).
[26] Fienup J R. Phase retrieval algorithms: a personal tour[J]. Applied Optics, 52, 45-56(2012).
[27] Zuo C, Li J J, Sun J S et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).
[28] Zheng G A, Shen C, Jiang S W et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).
[29] Jin D, Zhou R J, Yaqoob Z et al. Tomographic phase microscopy: principles and applications in bioimaging[J]. Journal of the Optical Society of America B, 34, B64-B77(2017).
[30] Claxton N S, Fellers T J, Davidson M W. Laser scanning confocal microscopy[J]. Encyclopedia of Medical Devices and Instrumentation, 21, 1-37(2006).
[31] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[32] Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography[J]. Journal of Physics D, 38, 2519-2535(2005).
[33] Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 57, OCT1-OCT13(2016).
[34] Lu D X, Fang W H, Li Y Y et al. Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 13, 919-935(2020).
[35] Kak A C, Slaney M[M]. Principles of computerized tomographic imaging(2001).
[36] Sharpe J. Optical projection tomography[J]. Annual Review of Biomedical Engineering, 6, 209-228(2004).
[37] Müller P, Schürmann M, Guck J. ODTbrain: a Python library for full-view, dense diffraction tomography[J]. BMC Bioinformatics, 16, 367(2015).
[38] Balasubramani V, KuAs' A, Tu H Y et al. Holographic tomography: techniques and biomedical applications[J]. Applied Optics, 60, B65-B80(2021).
[39] Chaumet P C, Belkebir K. Three-dimensional reconstruction from real data using a conjugate gradient-coupled dipole method[J]. Inverse Problems, 25, 024003(2009).
[40] Abubakar A, Habashy T M, Pan G D et al. Application of the multiplicative regularized Gauss-Newton algorithm for three-dimensional microwave imaging[J]. IEEE Transactions on Antennas and Propagation, 60, 2431-2441(2012).
[41] Colton D, Kress R[M]. Inverse acoustic and electromagnetic scattering theory(1998).
[42] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Optics Communications, 1, 153-156(1969).
[43] Devaney A J. Inverse-scattering theory within the Rytov approximation[J]. Optics Letters, 6, 374-376(1981).
[44] van Roey J, van der Donk J, Lagasse P E. Beam-propagation method: analysis and assessment[J]. Journal of the Optical Society of America, 71, 803-810(1981).
[45] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 11, 1491-1499(1994).
[46] Girard J, Maire G, Giovannini H et al. Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime[J]. Physical Review A, 82, 061801(2010).
[47] Pan S, Kak A. A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered-backpropagation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31, 1262-1275(1983).
[48] Kostencka J, Kozacki T. Space-domain, filtered backpropagation algorithm for tomographic configuration with scanning of illumination[J]. Proceedings of SPIE, 9890, 98900F(2016).
[49] Devaney A J. A filtered backpropagation algorithm for diffraction tomography[J]. Ultrasonic Imaging, 4, 336-350(1982).
[50] Paladhi P R, Sinha A, Tayebi A et al. Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography[J]. Progress in Electromagnetics Research B, 66, 1-13(2016).
[51] Kostencka J, Kozacki T. Computational and experimental study on accuracy of off-axis reconstructions in optical diffraction tomography[J]. Optical Engineering, 54, 024107(2015).
[52] Paladhi P R, Sinha A, Tayebi A et al. Class of backpropagation techniques for limited-angle reconstruction in microwave tomography[C], 1650, 509-518(2015).
[53] Vouldis A T, Kechribaris C N, Maniatis T A et al. Three-dimensional diffraction tomography using filtered backpropagation and multiple illumination planes[J]. IEEE Transactions on Instrumentation and Measurement, 55, 1975-1984(2006).
[54] Wedberg T C, Stamnes J J, Singer W. Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography[J]. Applied Optics, 34, 6575-6581(1995).
[55] Kostencka J, Kozacki T, Kuś A et al. Accurate approach to capillary-supported optical diffraction tomography[J]. Optics Express, 23, 7908-7923(2015).
[56] Dardikman G, Shaked N T. Review on methods of solving the refractive index-thickness coupling problem in digital holographic microscopy of biological cells[J]. Optics Communications, 422, 8-16(2018).
[57] LaRoque S J, Sidky E Y, Pan X C. Accurate image reconstruction from few-view and limited-angle data in diffraction tomography[J]. Journal of the Optical Society of America A, 25, 1772-1782(2008).
[58] Sung Y, Dasari R R. Deterministic regularization of three-dimensional optical diffraction tomography[J]. Journal of the Optical Society of America A, 28, 1554-1561(2011).
[59] Kamilov U S, Papadopoulos I N, Shoreh M H et al. Optical tomographic image reconstruction based on beam propagation and sparse regularization[J]. IEEE Transactions on Computational Imaging, 2, 59-70(2016).
[60] Liu H Y, Liu D H, Mansour H et al. SEAGLE: sparsity-driven image reconstruction under multiple scattering[J]. IEEE Transactions on Computational Imaging, 4, 73-86(2018).
[61] Soubies E, Pham T A, Unser M. Efficient inversion of multiple-scattering model for optical diffraction tomography[J]. Optics Express, 25, 21786-21800(2017).
[62] Mudry E, Chaumet P C, Belkebir K et al. Electromagnetic wave imaging of three-dimensional targets using a hybrid iterative inversion method[J]. Inverse Problems, 28, 065007(2012).
[63] Smith-Dryden S, Fan S L, Saleh B E A et al. Optical diffraction tomography by use of optimization and phase-based fidelity criterion[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6800709(2021).
[64] Lim J, Lee K, Jin K H et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography[J]. Optics Express, 23, 16933-16948(2015).
[65] Sung Y, Choi W, Lue N et al. Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy[J]. PLoS One, 7, e49502(2012).
[66] Krauze W, Makowski P, Kujawińska M et al. Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography[J]. Optics Express, 24, 4924-4936(2016).
[67] Krauze W. Optical diffraction tomography with finite object support for the minimization of missing cone artifacts[J]. Biomedical Optics Express, 11, 1919-1926(2020).
[68] Pham T A, Soubies E, Goy A et al. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering[J]. Optics Express, 26, 2749-2763(2018).
[69] Nguyen T, Bui V, Nehmetallah G. 3D optical diffraction tomography using deep learning[C], DW2F.4(2018).
[70] Lim J, Ayoub A B, Psaltis D. Three-dimensional tomography of red blood cells using deep learning[J]. Advanced Photonics, 2, 026001(2020).
[71] Zhou K C, Horstmeyer R. Diffraction tomography with a deep image prior[J]. Optics Express, 28, 12872-12896(2020).
[72] Ryu D H, Ryu D, Baek Y S et al. DeepRegularizer: rapid resolution enhancement of tomographic imaging using deep learning[J]. IEEE Transactions on Medical Imaging, 40, 1508-1518(2021).
[73] Dong D S, Shi K B. Solving the missing cone problem by deep learning[J]. Advanced Photonics, 2, 020501(2020).
[74] Chung H, Huh J, Kim G et al. Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain[J]. IEEE Transactions on Computational Imaging, 7, 747-758(2021).
[75] Waller L, Tian L. Machine learning for 3D microscopy[J]. Nature, 523, 416-417(2015).
[76] Kamilov U S, Papadopoulos I N, Shoreh M H et al. Learning approach to optical tomography[J]. Optica, 2, 517-522(2015).
[77] Qiao H, Wu J M, Li X X et al. GPU-based deep convolutional neural network for tomographic phase microscopy with ℓ1 fitting and regularization[J]. Journal of Biomedical Optics, 23, 066003(2018).
[78] Di J L, Tang J, Wu J et al. Research progress in the applications of convolutional neural networks in optical information processing[J]. Laser & Optoelectronics Progress, 58, 1600001(2021).
[79] Kim T, Zhou R J, Mir M et al. White-light diffraction tomography of unlabelled live cells[J]. Nature Photonics, 8, 256-263(2014).
[80] Lee K R, Shin S, Yaqoob Z et al. Low-coherent optical diffraction tomography by angle-scanning illumination[J]. Proceedings of SPIE, 10887, 108870A(2019).
[81] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104-111(2015).
[82] Zuo C, Sun J S, Li J J et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. Optics and Lasers in Engineering, 128, 106003(2020).
[83] Koo S E, Jang S, Park Y et al. Reconstructed three-dimensional images and parameters of individual erythrocytes using optical diffraction tomography microscopy[J]. Annals of Laboratory Medicine, 39, 223-226(2019).
[84] Lee M, Lee Y H, Song J et al. Deep-learning based three-dimensional label-free tracking and analysis of immunological synapses of chimeric antigen receptor T cells[J]. eLife, 9, e49023(2020).
[85] Tougan T, Edula J R, Takashima E et al. Molecular camouflage of plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5[J]. Scientific Reports, 8, 5052(2018).
[86] Horstmeyer R, Chung J, Ou X Z et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).
[87] Charrière F, Marian A, Montfort F et al. Cell refractive index tomography by digital holographic microscopy[J]. Optics Letters, 31, 178-180(2006).
[88] Choi W, Fang-Yen C, Badizadegan K et al. Tomographic phase microscopy[J]. Nature Methods, 4, 717-719(2007).
[89] Lippmann B A, Schwinger J. Variational principles for scattering processes: I[J]. Physical Review, 79, 469-480(1950).
[90] Born M, Wolf E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).
[91] Debailleul M, Simon B, Georges V et al. Holographic microscopy and diffractive microtomography of transparent samples[J]. Measurement Science and Technology, 19, 074009(2008).
[92] Popescu G[M]. Quantitative phase imaging of cells and tissues(2011).
[93] Zhou R J, Kim T, Goddard L L et al. Inverse scattering solutions using low-coherence light[J]. Optics Letters, 39, 4494-4497(2014).
[94] Jiang G, Jing W, Cheng B B et al. Relationship between radar imaging and diffraction tomography[J]. Journal of Infrared and Millimeter Waves, 37, 486-492, 500(2018).
[95] Rangayyan R, Dhawan A P, Gordon R. Algorithms for limited-view computed tomography: an annotated bibliography and a challenge[J]. Applied Optics, 24, 4000-4012(1985).
[96] Weerasinghe C, Yan H. An improved algorithm for rotational motion artifact suppression in MRI[J]. IEEE Transactions on Medical Imaging, 17, 310-317(1998).
[97] Sung Y, Choi W, Fang-Yen C et al. Optical diffraction tomography for high resolution live cell imaging[J]. Optics Express, 17, 266-277(2009).
[98] Vertu S, Yamada I, Delaunay J J et al. Tomographic observation of transparent objects under coherent illumination and reconstruction by filtered backprojection and Fourier diffraction theorem[J]. Proceedings of SPIE, 6861, 686103(2008).
[99] Fauver M, Seibel E, Rahn J R et al. Three-dimensional imaging of single isolated cell nuclei using optical projection tomography[J]. Optics Express, 13, 4210-4223(2005).
[100] Charrière F, Pavillon N, Colomb T et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba[J]. Optics Express, 14, 7005-7013(2006).
[101] Tam K C, Perez-Mendez V. Tomographical imaging with limited-angle input[J]. Journal of the Optical Society of America, 71, 582-592(1981).
[102] van den Berg P M, van Broekhoven A L, Abubakar A. Extended contrast source inversion[J]. Inverse Problems, 15, 1325-1344(1999).
[103] Abubakar A, van den Berg P M. The contrast source inversion method for location and shape reconstructions[J]. Inverse Problems, 18, 495-510(2002).
[104] Belkebir K, Chaumet P C, Sentenac A. Superresolution in total internal reflection tomography[J]. Journal of the Optical Society of America A, 22, 1889-1897(2005).
[105] Kamilov U S, Liu D H, Mansour H et al. A recursive born approach to nonlinear inverse scattering[J]. IEEE Signal Processing Letters, 23, 1052-1056(2016).
[106] Zhang T, Godavarthi C, Chaumet P C et al. Far-field diffraction microscopy at λ/10 resolution[J]. Optica, 3, 609-612(2016).
[107] Soubies E, Soulez F, McCann M T et al. Pocket guide to solve inverse problems with GlobalBioIm[J]. Inverse Problems, 35, 104006(2019).
[108] Charbonnier P, Blanc-Feraud L, Aubert G et al. Deterministic edge-preserving regularization in computed imaging[J]. IEEE Transactions on Image Processing, 6, 298-311(1997).
[109] Delaney A H, Bresler Y. Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 7, 204-221(1998).
[110] Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 58, 1182-1195(2007).
[111] Cacace T, Bianco V, Ferraro P. Quantitative phase imaging trends in biomedical applications[J]. Optics and Lasers in Engineering, 135, 106188(2020).
[112] Kuś A, Dudek M, Kemper B et al. Tomographic phase microscopy of living three-dimensional cell cultures[J]. Journal of Biomedical Optics, 19, 046009(2014).
[113] Sung Y, Lue N, Hamza B et al. Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel[J]. Physical Review Applied, 1, 014002(2014).
[114] Merola F, Memmolo P, Miccio L et al. Tomographic flow cytometry by digital holography[J]. Light: Science & Applications, 6, e16241(2017).
[115] Funamizu H, Aizu Y. Three-dimensional quantitative phase imaging of blood coagulation structures by optical projection tomography in flow cytometry using digital holographic microscopy[J]. Journal of Biomedical Optics, 24, 031012(2018).
[116] Habaza M, Gilboa B, Roichman Y et al. Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers[J]. Optics Letters, 40, 1881-1884(2015).
[117] Habaza M, Kirschbaum M, Guernth-Marschner C et al. Rapid 3D refractive-index imaging of live cells in suspension without labeling using dielectrophoretic cell rotation[J]. Advanced Science, 4, 1600205(2016).
[118] Belashov A V, Petrov N V, Semenova I V. Accuracy of image-plane holographic tomography with filtered backprojection: random and systematic errors[J]. Applied Optics, 55, 81-88(2016).
[119] Gorski W, Osten W. Tomographic imaging of photonic crystal fibers[J]. Optics Letters, 32, 1977-1979(2007).
[120] Su J W, Hsu W C, Chou C Y et al. Digital holographic microtomography for high-resolution refractive index mapping of live cells[J]. Journal of Biophotonics, 6, 416-424(2013).
[121] Kuś A, Krauze W, Kujawińska M. Focus-tunable lens in limited-angle holographic tomography[J]. Proceedings of SPIE, 10070, 1007009(2017).
[122] Shin S, Kim K, Yoon J et al. Active illumination using a digital micromirror device for quantitative phase imaging[J]. Optics Letters, 40, 5407-5410(2015).
[123] Jin D, Zhou R J, Yaqoob Z et al. Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography[J]. Optics Express, 26, 428-437(2018).
[124] Kuś A, Krauze W, Kujawińska M. Limited-angle holographic tomography with optically controlled projection generation[J]. Proceedings of SPIE, 9330, 933007(2015).
[125] Shin S, Kim K, Kim T et al. Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells[J]. Proceedings of SPIE, 9718, 971814(2016).
[126] Shin S, Kim D, Kim K et al. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device[J]. Scientific Reports, 8, 9183(2018).
[127] Lee C, Kim S, Hugonnet H et al. Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography[J]. Lab on a Chip, 21, 494-501(2021).
[128] Oh J, Ryu J S, Lee M et al. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography[J]. Biomedical Optics Express, 11, 1257-1267(2020).
[129] Hugonnet H, Kim Y W, Lee M et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution[J]. Advanced Photonics, 3, 026004(2021).
[130] Hsu W C, Su J W, Tseng T Y et al. Tomographic diffractive microscopy of living cells based on a common-path configuration[J]. Optics Letters, 39, 2210-2213(2014).
[131] Kim Y, Shim H, Kim K et al. Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells[J]. Optics Express, 22, 10398-10407(2014).
[132] Nguyen T H, Edwards C, Goddard L L et al. Quantitative phase imaging with partially coherent illumination[J]. Optics Letters, 39, 5511-5514(2014).
[133] Somekh M G, See C W, Goh J. Wide field amplitude and phase confocal microscope with speckle illumination[J]. Optics Communications, 174, 75-80(2000).
[134] Redding B, Bromberg Y, Choma M A et al. Full-field interferometric confocal microscopy using a VCSEL array[J]. Optics Letters, 39, 4446-4449(2014).
[135] Chen X, Kandel M E, Hu C F et al. Wolf phase tomography (WPT) of transparent structures using partially coherent illumination[J]. Light: Science & Applications, 9, 142(2020).
[136] Nguyen T H, Kandel M E, Rubessa M et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens[J]. Nature Communications, 8, 210(2017).
[137] Lee K, Shin S, Yaqoob Z et al. Low-coherent optical diffraction tomography by angle-scanning illumination[J]. Proceedings of SPIE, 10887, 108870A(2019).
[138] Park C, Lee K, Baek Y et al. Low-coherence optical diffraction tomography using a ferroelectric liquid crystal spatial light modulator[J]. Optics Express, 28, 39649-39659(2020).
[139] Streibl N. Three-dimensional imaging by a microscope[J]. Journal of the Optical Society of America A, 2, 121-127(1985).
[140] Jenkins M H, Gaylord T K. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy[J]. Applied Optics, 54, 9213-9227(2015).
[141] Chen M, Tian L, Waller L. 3D differential phase contrast microscopy[J]. Biomedical Optics Express, 7, 3940-3950(2016).
[142] Soto J M, Rodrigo J A, Alieva T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy[J]. Optics Express, 25, 15699-15712(2017).
[143] Rodrigo J A, Soto J M, Alieva T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells[J]. Biomedical Optics Express, 8, 5507-5517(2017).
[144] Soto J M, Mas A, Rodrigo J A et al. Label-free bioanalysis of Leishmania infantum using refractive index tomography with partially coherent illumination[J]. Journal of Biophotonics, 12, e201900030(2019).
[145] Descloux A, Grußmayer K S, Bostan E et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy[J]. Nature Photonics, 12, 165-172(2018).
[146] Park J, Brady D J, Zheng G A et al. Review of bio-optical imaging systems with a high space-bandwidth product[J]. Advanced Photonics, 3, 044001(2021).
[147] Zhang S H, Zhou G C, Cui B Q et al. Review of Fourier ptychographic microscopy: models, algorithms, and systems[J]. Laser & Optoelectronics Progress, 58, 1400001(2021).
[148] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[149] Unger K D, Chaumet P C, Maire G et al. Versatile inversion tool for phaseless optical diffraction tomography[J]. Journal of the Optical Society of America A, 36, C1-C8(2019).
Get Citation
Copy Citation Text
Zewen Yang, Lu Zhang, Ning Lü, Huijun Wang, Zhenxi Zhang, Li Yuan. Progress of Three-Dimensional, Label-Free Quantitative Imaging of Refractive Index in Biological Samples[J]. Chinese Journal of Lasers, 2022, 49(5): 0507201
Received: Nov. 30, 2021
Accepted: Jan. 10, 2022
Published Online: Mar. 9, 2022
The Author Email: Zhang Lu (gingerluzhang@mail.xjtu.edu.cn)