Remote Sensing Technology and Application, Volume. 40, Issue 4, 969(2025)

Super-Resolution Reconstruction Methods for Remote Sensing Images: A Review and Experiments

ZOU Chengquan1, HUANG Jiangcheng1, SUN Zhengbao2、*, and YANG Yutong3
Author Affiliations
  • 1Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
  • 2School of Engineering, Yunnan University, Kunming 650500, China
  • 3School of Earth Sciences, Yunnan University, Kunming 650500, China
  • show less
    References(130)

    [1] [1] PERONA P, BRANSON S J, WEGNER J D,et al. System and method for locating and performing fine grained classification from multi-view image data: U.S.Patent 10, 534, 960[P].2020-1-14.

    [2] [2] SHANNON C E. Communication in the presence of noise[J].Proceedings of the Institute of Radio Engineers, 1949, 37(1): 10-21.

    [3] [3] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE signal processing magazine, 2003, 20(3): 21-36.

    [4] [4] YANG C Y, MA C, YANG M H. Single-image super-resolution: A benchmark[C]//Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. Springer International Publishing, 2014: 372-386.

    [5] [5] WANG P, BAYRAM B, SERTEL E. A comprehensive review on deep learning based remote sensing image super-resolution methods[J].Earth-Science Reviews, 2022, 232: 104110. DOI: 10.1016/j.earscirev.2022.104110.

    [6] [6] LIU H, QIAN Y, ZHONG X,et al. Research on super-resolution reconstruction of remote sensing images: A comprehensive review[J].Optical Engineering, 2021, 60(10): 100901. DOI: 10.1117/1.OE.60.10.100901.

    [8] [8] LU Z W, WU C D, CHEN D Y,et al. Overview on image super resolution reconstruction[C]//The 26th Chinese Control and Decision Conference(2014 CCDC).IEEE, 2014: 2009-2014.

    [10] [10] BLU T, THVENAZ P, UNSER M. Linear interpolation revitalized[J].IEEE Transactions on Image Processing, 2004, 13(5): 710-719.

    [11] [11] HOU H, ANDREWS H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508-517.

    [12] [12] SHI J, REICHENBACH S E. Image interpolation by two-dimensional parametric cubic convolution[J]. IEEE Transactions on Image Processing, 2006, 15(7): 1857-1870.

    [13] [13] CHANG S G, CVETKOVIC Z, VETTERLI M. Resolution enhancement of images using wavelet transform extrema extrapolation[C]//1995 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1995, 4: 2379-2382.

    [14] [14] CARRATO S, TENZE L. A high quality 2 x image interpolator[J]. IEEE Signal Processing Letters, 2000, 7(6): 132-134.

    [15] [15] LI X, ORCHARD M T. New edge-directed interpolation[J].IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527.

    [16] [16] MURESAN D D. Fast edge directed polynomial interpolation[C]//IEEE International Conference on Image Processing 2005. IEEE, 2005, 2: II-990.

    [17] [17] ZHAN Y, WANG M H, LI M. An Isophote-Oriented Image Interpolation Method[C]//2008 International Symposium on Computer Science and Computational Technology. IEEE, 2008, 1: 723-726.

    [18] [18] ZHANG L, WU X. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE transactions on Image Processing, 2006, 15(8): 2226-2238.

    [19] [19] CHANG S G, CVETKOVIC Z, VETTERLI M. Resolution enhancement of images using wavelet transform extrema extrapolation[C]//1995 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1995, 4: 2379-2382.

    [20] [20] CAREY W K, CHUANG D B, HEMAMI S S. Regularity-preserving image interpolation[J]. IEEE Transactions on Image Processing, 1999, 8(9): 1293-1297.

    [21] [21] TEMIZEL A, VLACHOS T. Wavelet domain image resolution enhancement using cycle-spinning[J]. Electronics Letters, 2005, 41(3): 119-121. DOI: 10.1049/el: 20057150

    [22] [22] KINEBUCHI K, MURESAN D D, PARKS T W. Image interpolation using wavelet based hidden Markov trees[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221.IEEE, 2001, 3: 1957-1960.

    [23] [23] TOLPEKIN V A, STEIN A. Quantification of the effects of land-cover-class spectral separability on the accuracy of Markov-random-field-based superresolution mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3283-3297.

    [24] [24] DHEKALE R B, JADHAV B D, PATIL P M.Satellite image(multispectral) enhancement techniques in wavelet domain: An overview[J].International Journal of Computer Applications, 2015, 112(11): 16-20.

    [25] [25] ANBARJAFARI G, DEMIREL H. Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image[J]. Electronics and Telecommunications Research Institute Journal, 2010, 32(3): 390-394.

    [26] [26] DEMIREL H, ANBARJAFARI G. Discrete wavelet transform-based satellite image resolution enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1997-2004.

    [27] [27] MUTHUKRISHNAN A, KUMAR D V, Kanagaraj M. Internet of image things-discrete wavelet transform and Gabor wavelet transform based image enhancement resolution technique for IoT satellite applications[J]. Cognitive Systems Research, 2019, 57: 46-53.

    [28] [28] WITWIT W, ZHAO Y, JENKINS K,et al. Satellite image resolution enhancement using discrete wavelet transform and new edge-directed interpolation[J]. Journal of Electronic Imaging, 2017, 26(2): 1-9. DOI: 10.1117/1.JEI.26.2.023014

    [29] [29] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 1991, 53(3): 231-239.

    [30] [30] DONG W, ZHANG L, SHI G,et al. Nonlocal back-projection for adaptive image enlargement[C]//2009 16th IEEE International Conference on Image Processing (ICIP). IEEE, 2009: 349-352.

    [31] [31] CHOI J S, BAE S H, KIM M. Single image super-resolution based on self-examples using context-dependent subpatches[C]//2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015: 2835-2839.

    [32] [32] LIANG X, GAN Z. Improved non-local iterative back-projection method for image super-resolution[C]//2011 Sixth International Conference on Image and Graphics.IEEE, 2011: 176-181.

    [36] [36] QIN F. An improved super resolution reconstruction method based on initial value estimation[C]//2010 3rd International Congress on Image and Signal Processing. IEEE, 2010, 2: 826-829.

    [37] [37] STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1989, 6(11): 1715-1726.

    [38] [38] TANG Z, DENG M, XIAO C,et al. Projection onto convex sets super-resolution image reconstruction based on wavelet bi-cubic interpolation[C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. IEEE, 2011, 1: 351-354.

    [39] [39] SHANG L, LIU S, SUN Z. Image super-resolution reconstruction based on sparse representation and POCS method[C]//Intelligent Computing Theories and Methodologies: 11th International Conference, ICIC 2015, Fuzhou, China, August 20-23, 2015, Proceedings, Part I 11. Springer International Publishing, 2015: 348-356.

    [40] [40] XI H, XIAO C, BIAN C. Edge halo reduction for projections onto convex sets super resolution image reconstruction[C]//2012 International Conference on Digital Image Computing Techniques and Applications (DICTA). IEEE, 2012: 1-7.

    [43] [43] ZHA Z, LIU H, LI J. Based on the technique of regularization MAP super-resolution image reconstruction algorithm[C]//2014 Seventh International Symposium on Computational Intelligence and Design. IEEE, 2014, 1: 31-34.

    [44] [44] ZHANG H, ZHANG L, SHEN H,et al. A MAP approach for joint image registration, blur identification and super resolution[C]//2009 Fifth International Conference on Image and Graphics. IEEE, 2009: 97-102.

    [45] [45] SCHULTZ R R, STEVENSON R L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(3): 233-242.

    [46] [46] ELAD M, FEUER A. Super-resolution reconstruction of image sequences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(9): 817-834.

    [48] [48] BAKER S, KANADE T. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183.

    [49] [49] YANG D, LI Z, XIA Y,et al. Remote sensing image superresolution: Challenges and approaches[C]//2015 IEEE international Conference on Digital Signal Processing(DSP).IEEE, 2015: 196-200.

    [50] [50] CHANG H, YEUNG D Y, XIONG Y. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, 2004, 1: I-I.

    [51] [51] SU K, TIAN Q, XUE Q,et al. Neighborhood issue in single-frame image super-resolution[C]//2005 IEEE International Conference on Multimedia and Expo. IEEE, 2005: 4 pp.

    [52] [52] CHAN T M, ZHANG J. An improved super-resolution with manifold learning and histogram matching[C]//Advances in Biometrics: International Conference, ICB 2006, Hong Kong, China, January 5-7, 2006. Proceedings. Springer Berlin Heidelberg, 2005: 756-762.

    [53] [53] ZHANG H, ZHANG L, SHEN H,et al. A MAP approach for joint image registration, blur identification and super resolution[C]//2009 Fifth International Conference on Image and Graphics. IEEE, 2009: 97-102.

    [54] [54] ZHANG K, GAO X, LI X,et al. Partially supervised neighbor embedding for example-based image super-resolution[J].IEEE Journal of Selected Topics in Signal Processing, 2010, 5(2): 230-239.

    [55] [55] GAO X, ZHANG K, TAO D,et al. Joint learning for single-image super-resolution via a coupled constraint[J]. IEEE Transactions on Image Processing, 2011, 21(2): 469-480.

    [56] [56] CHAN T M, ZHANG J, PU J,et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J]. Pattern Recognition Letters, 2009, 30(5): 494-502.

    [57] [57] ELHAMIFAR E, VIDAL R. Sparse manifold clustering and embedding[J]. Advances in Neural Information Processing Systems, 2011, 24: 55-63.

    [58] [58] YANG J, WRIGHT J, HUANG T S,et al. Image superresolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.

    [59] [59] YANG J, WANG Z, LIN Z,et al. Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467-3478.

    [60] [60] YANG S, WANG M, CHEN Y,et al. Single-image superresolution reconstruction via learned geometric dictionaries and clustered sparse coding[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4016-4028.

    [61] [61] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7. Springer Berlin Heidelberg, 2012: 711-730.

    [62] [62] TIMOFTE R, DE SMET V, VAN GOOL L. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of the IEEE International Conference on Computer Vision, 2013: 1920-1927.

    [63] [63] ZHENG Z H, WANG B, SUN K. Single remote sensing image super-resolution and denoising via sparse representation[C]//2011 International Workshop on Multi-platform/multisensor Remote Sensing and Mapping. IEEE, 2011: 1-5.

    [64] [64] LIU S, ZHU Y, XUE L. Remote sensing image super-resolution method using sparse representation and classified texture patches[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 578-582.

    [66] [66] SYRRIS V, FERRI S, EHRLICH D,et al. Image enhancement and feature extraction based on low-resolution satellite data[J]. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing, 2015, 8(5): 1986-1995.

    [67] [67] AGUSTSSON E, TIMOFTE R. Ntire 2017 challenge on single image super-resolution: Dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 126-135.

    [68] [68] LIM B, SON S, KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 136-144.

    [69] [69] ZHANG M, TECK MA K, HWEE LIM J,et al. Deep future gaze: Gaze anticipation on egocentric videos using adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4372-4381.

    [70] [70] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.

    [71] [71] KARRAS T.Progressive Growing of GANs for Improved Quality, Stability, and Variation[J].arXiv Preprint arXiv: 1710.10196, 2017. DOI: 10.48550/arXiv.1710.10196

    [72] [72] BEVILACQUA M, ROUMY A, GUILLEMOT C,et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//British Machine Vision Conference (BMVC), 2012: 1-10. DOI: 10.5244/C.26.135

    [73] [73] MARTIN D, FOWLKES C, TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. IEEE, 2001, 2: 416-423.

    [74] [74] HUANG J B, SINGH A, AHUJA N. Single image superresolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5197-5206.

    [75] [75] XIA G S, HU J, HU F,et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.

    [76] [76] YANG Y, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010: 270-279.

    [77] [77] DAI D, YANG W. Satellite image classification via two-layer sparse coding with biased image representation[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(1): 173-176.

    [78] [78] CHENG G, HAN J, LU X. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.

    [80] [80] LECUN Y, BENGIO Y, HINTON G. Deep learning[J].Nature, 2015, 521(7553): 436-444.

    [81] [81] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25.

    [82] [82] SZEGEDY C, LIU W, JIA Y,et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.

    [83] [83] DONG C, LOY C C, HE K,et al. Learning a deep convolutional network for image super-resolution[C]//Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. Springer International Publishing, 2014: 184-199.

    [84] [84] DONG C, LOY C C, HE K,et al. Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.

    [85] [85] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.

    [86] [86] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1637-1645.

    [87] [87] LIM B, SON S, KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.

    [88] [88] LIEBEL L, KRNER M. Single-image super resolution for multispectral remote sensing data using convolutional neural networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41: 883-890.

    [89] [89] TUNA C, UNAL G, SERTEL E. Single-frame super resolution of remote-sensing images by convolutional neural networks[J]. International Journal of Remote Sensing, 2018, 39(8): 2463-2479.

    [90] [90] HUANG N, YANG Y, LIU J,et al. Single-image superresolution for remote sensing data using deep residual-learning neural network[C]//Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24. Springer International Publishing, 2017: 622-630.

    [91] [91] LEI S, SHI Z, ZOU Z. Coupled adversarial training for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(5): 3633-3643.

    [92] [92] WANG T, SUN W, QI H,et al. Aerial image super resolution via wavelet multiscale convolutional neural networks[J].IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 769-773.

    [93] [93] TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3147-3155.

    [94] [94] MA W, PAN Z, GUO J,et al. Achieving super-resolution remote sensing images via the wavelet transform combined with the recursive res-net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3512-3527.

    [95] [95] WAGNER L, LIEBEL L, KRNER M. Deep residual learning for single-image super-resolution of multi-spectral satellite imagery[J]. International Society for Photogrammetry and Remote Sensing Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4: 189-196.

    [96] [96] TONG T, LI G, LIU X,et al. Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 4799-4807.

    [97] [97] ZHANG D, SHAO J, LI X,et al. Remote sensing image super-resolution via mixed high-order attention network[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6): 5183-5196.

    [98] [98] MEI S, YUAN X, JI J,et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J].Remote Sensing, 2017, 9(11): 1139. DOI: 10.3390/rs9111139

    [99] [99] WAGNER L, LIEBEL L, KRNER M. Deep residual learning for single-image super-resolution of multi-spectral satellite imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4: 189-196.

    [100] [100] MLLER M U, EKHTIARI N, ALMEIDA R M,et al. Superresolution of multispectral satellite images using convolutional neural networks[J].arXiv Preprint, 2020. DOI: 10.48550/arXiv. 2002.00580

    [101] [101] GOODFELLOW I, POUGET-ABADIE J, MIRZA M,et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 2672-2680.

    [102] [102] LEDIG C, THEIS L, HUSZR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4681-4690.

    [103] [103] JIANG K, WANG Z, YI P,et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5799-5812.

    [104] [104] WU B, DUAN H, LIU Z,et al. SRPGAN: perceptual generative adversarial network for single image super resolution[J]. arXiv preprint, 2017. DOI: 10.48550/arXiv. 1712.05927

    [105] [105] HUANG Z X, JING C W. Super-resolution reconstruction method of remote sensing image based on multi-feature fusion[J]. IEEE Access, 2020, 8: 18764-18771.

    [106] [106] WANG X, YU K, WU S,et al. Esrgan: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops. 2018: 0-0.

    [107] [107] MAO Q, WANG S, WANG S,et al. Enhanced image decoding via edge-preserving generative adversarial networks[C]//2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2018: 1-6.

    [108] [108] JIANG K, WANG Z, YI P,et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5799-5812.

    [109] [109] WANG Z, JIANG K, YI P,et al. Ultra-dense GAN for satellite imagery super-resolution[J]. Neurocomputing, 2020, 398: 328-337.

    [110] [110] SUSTIKA R, SUKSMONO A B, DANUDIRDJO D,et al. Generative adversarial network with residual dense generator for remote sensing image super resolution[C]//2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). IEEE, 2020: 34-39.

    [111] [111] LIU B, LI H, ZHOU Y,et al. A super resolution method for remote sensing images based on cascaded conditional Wasserstein GANs[C]//2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP).IEEE, 2020: 284-289.

    [112] [112] DENG J, HONG D, LI C,et al. Joint super-resolution and segmentation for 1-m impervious surface area mapping in China's Yangtze River economic belt[J].arXiv preprint, 2025. DOI: 10.48550/arXiv. 2505.05367

    [113] [113] GUO D, XIA Y, XU L,et al. Remote sensing image superresolution using cascade generative adversarial nets[J]. Neurocomputing, 2021, 443: 117-130.

    [114] [114] HU Y, LI J, HUANG Y,et al. Channel-wise and spatial feature modulation network for single image super-resolution[J].IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3911-3927.

    [115] [115] WOO S, PARK J, LEE J Y,et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV), 2018: 3-19.

    [116] [116] CHENG X, LI X, YANG J,et al. SESR: Single image super resolution with recursive squeeze and excitation networks[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 147-152.

    [117] [117] KIM J H, CHOI J H, CHEON M,et al. Ram: Residual attention module for single image super-resolution[J]. arXiv preprint arXiv: 1811.12043, 2018, 2(1): 2.

    [118] [118] ZHANG Y, LI K, LI K,et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision(ECCV), 2018: 286-301.

    [119] [119] GU J, SUN X, ZHANG Y,et al. Deep residual squeeze and excitation network for remote sensing image super-resolution[J]. Remote Sensing, 2019, 11(15): 1817. DOI: 10.3390/rs 11151817

    [120] [120] HAUT J M, FERNANDEZ-BELTRAN R, PAOLETTI M E,et al. Remote sensing image superresolution using deep residual channel attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9277-9289.

    [121] [121] WANG X, WU Y, MING Y,et al. Remote sensing imagery super resolution based on adaptive multi-scale feature fusion network[J]. Sensors, 2020, 20(4): 1142. DOI: 10.3390/s20041142

    [122] [122] ZHANG D, SHAO J, LI X,et al. Remote sensing image super-resolution via mixed high-order attention network[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6): 5183-5196.

    [123] [123] MOUSTAFA M S, SAYED S A. Satellite imagery superresolution using squeeze-and-excitation-based GAN[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6): 1481-1492.

    [124] [124] WANG H, HU Q, WU C,et al. Non-locally up-down convolutional attention network for remote sensing image superresolution[J]. IEEE Access, 2020, 8: 166304-166319. DOI: 10.1109/ACCESS.2020.3022882

    [125] [125] CHEN L, LIU H, YANG M,et al. Remote sensing image superresolution via residual aggregation and split attentional fusion network[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9546-9556.

    [126] [126] HUI Z, GAO X, YANG Y,et al. Lightweight image superresolution with information multi-distillation network[C]//Proceedings of the 27th Acm International Conference on Multimedia. 2019: 2024-2032.

    [127] [127] WANG Z, LI L, XUE Y,et al. FeNet: Feature enhancement network for lightweight remote-sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.

    [128] [128] SOHL-DICKSTEIN J, WEISS E, MAHESWARANATHAN N,et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//International Conference on Machine Learning. PMLR, 2015: 2256-2265.

    [129] [129] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.

    [130] [130] KONG Z, PING W, HUANG J,et al. Diffwave: A versatile diffusion model for audio synthesis[J]. arXiv preprint, 2020. DOI: 10.48550/arXiv. 2009.09761

    [131] [131] MITTAL G, ENGEL J, HAWTHORNE C,et al. Symbolic music generation with diffusion models[J].arXiv preprint, 2021. DOI: 10.48550/arXiv. 2103.16091

    [132] [132] LUO S, HU W. Diffusion probabilistic models for 3d point cloud generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2837-2845.

    [133] [133] LI H, YANG Y, CHANG M,et al. Srdiff: Single image super-resolution with diffusion probabilistic models[J]. Neurocomputing, 2022, 479: 47-59.

    [134] [134] SONG J, MENG C, ERMON S. Denoising diffusion implicit models[J].arXiv preprint, 2020. DOI: 10.48550/arXiv. 2010.02502

    [135] [135] KONG Z, PING W. On fast sampling of diffusion probabilistic models[J]. arXiv preprint, 2021. DOI: 10.48550/arXiv.2106. 00132

    [136] [136] LIU J, YUAN Z, PAN Z,et al. Diffusion model with detail complement for super-resolution of remote sensing[J]. Remote Sensing, 2022, 14(19): 4834. DOI: 10.3390/rs14194834

    [137] [137] HAN L, ZHAO Y, L H,et al. Enhancing remote sensing image super-resolution with efficient hybrid conditional diffusion model[J]. Remote Sensing, 2023, 15(13): 2672-2680.

    [138] [138] XIAO Y, YUAN Q, JIANG K,et al. EDiffSR: An efficient diffusion probabilistic model for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 1-4.

    [139] [139] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.

    [140] [140] BLAU Y, MECHREZ R, TIMOFTE R,et al. The 2018 PIRM challenge on perceptual image super-resolution[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops, 2018. DOI: 10.48550/arXiv.1809.07517

    Tools

    Get Citation

    Copy Citation Text

    ZOU Chengquan, HUANG Jiangcheng, SUN Zhengbao, YANG Yutong. Super-Resolution Reconstruction Methods for Remote Sensing Images: A Review and Experiments[J]. Remote Sensing Technology and Application, 2025, 40(4): 969

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 16, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: SUN Zhengbao (zbsun@ynu.edu.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.0969

    Topics