Remote Sensing Technology and Application, Volume. 40, Issue 4, 969(2025)
Super-Resolution Reconstruction Methods for Remote Sensing Images: A Review and Experiments
[1] [1] PERONAP,BRANSONS J,WEGNERJ D,et al. System and method for locating and performing fine grained classification from multi-view image data:U.S.Patent10,534,960[P].2020-1-14.
[2] [2] SHANNONC E. Communication in the presence of noise[J]. Proceedings of the Institute of Radio Engineers, 1949, 37(1): 10-21.
[3] [3] PARKS C, PARKM K, KANGM G. Super-resolution image reconstruction:A technical overview[J]. IEEE signal processing magazine, 2003, 20(3): 21-36.
[4] [4] YANGC Y, MAC, YANGM H. Single-image super-resolution:A benchmark[C]∥Computer Vision-ECCV 2014: 13th European Conference,Zurich,Switzerland, September6-12, 2014, Proceedings,Part IV13. Springer International Publishing, 2014: 372-386.
[5] [5] WANGP, BAYRAMB, SERTELE. A comprehensive review on deep learning based remote sensing image super-resolution methods[J].Earth-Science Reviews,2022,232:104110.DOI: 10.1016/j.earscirev.2022.104110.
[6] [6] LIUH, QIANY, ZHONGX, et al. Research on super-resolution reconstruction of remote sensing images: A comprehensive review[J].Optical Engineering,2021,60(10):100901.DOI: 10.1117/1.OE.60.10.100901.
[7] [7] CHENGKeyang,RONGLan,JIANGSenlin,et al.Overview of methods for remote sensing image super-resolution reconstruction based on deep learning[J].Journal of Zhengzhou University(Engineering Science),2022,43(5):8-16.
[8] [8] LUZ W, WUC D, CHEND Y, et al. Overview on image super resolution reconstruction[C]∥The 26th Chinese Control and Decision Conference(2014 CCDC).IEEE,2014: 2009-2014.
[9] [9] ZHONGBaojiang,LUZhifang,JIJiahuan. 2016. Review on Image Interpolation Techniques[J]. Journal of Data Acquisition and Processing,2016,31(6): 1083-1096.
[10] [10] BLU T, THÉVENAZP, UNSERM. Linear interpolation revitalized[J].IEEE Transactions on Image Processing,2004, 13(5): 710-719.
[11] [11] HOUH, ANDREWSH. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508-517.
[12] [12] SHIJ, REICHENBACHS E. Image interpolation by two-dimensional parametric cubic convolution[J]. IEEE Transactions on Image Processing, 2006, 15(7): 1857-1870.
[13] [13] CHANGS G, CVETKOVICZ, VETTERLIM. Resolution enhancement of images using wavelet transform extrema extrapolation[C]∥1995 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1995, 4: 2379-2382.
[14] [14] CARRATOS, TENZEL. A high quality 2 x image interpolator[J]. IEEE Signal Processing Letters, 2000, 7(6): 132-134.
[15] [15] LIX, ORCHARDM T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing,2001,10(10):1521-1527.
[16] [16] MURESAND D. Fast edge directed polynomial interpolation[C]∥IEEE International Conference on Image Processing 2005. IEEE, 2005, 2: II-990.
[17] [17] ZHANY, WANGM H, LIM. An Isophote-Oriented Image Interpolation Method[C]∥2008 International Symposium on Computer Science and Computational Technology. IEEE, 2008, 1: 723-726.
[18] [18] ZHANGL, WUX. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE transactions on Image Processing, 2006, 15(8): 2226-2238.
[19] [19] CHANGS G, CVETKOVICZ, VETTERLIM. Resolution enhancement of images using wavelet transform extrema extrapolation[C]∥1995 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1995, 4: 2379-2382.
[20] [20] CAREYW K, CHUANGD B, HEMAMIS S. Regularity-preserving image interpolation[J]. IEEE Transactions on Image Processing, 1999, 8(9): 1293-1297.
[21] [21] TEMIZELA, VLACHOST. Wavelet domain image resolution enhancement using cycle-spinning[J]. Electronics Letters, 2005, 41(3):119-121. DOI: 10.1049/el:20057150
[22] [22] KINEBUCHIK, MURESAND D, PARKST W. Image interpolation using wavelet based hidden Markov trees[C]∥2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings Cat. No. 01CH37221. IEEE, 2001, 3: 1957-1960.
[23] [23] TOLPEKINV A, STEINA. Quantification of the effects of land-cover-class spectral separability on the accuracy of Markov-random-field-based superresolution mapping[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(9):3283-3297.
[24] [24] DHEKALER B,JADHAVB D,PATILP M.Satellite image(multispectral) enhancement techniques in wavelet domain:An overview[J].International Journal of Computer Applications, 2015, 112(11):16-20.
[25] [25] ANBARJAFARIG, DEMIRELH. Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image[J]. Electronics and Telecommunications Research Institute Journal, 2010, 32(3): 390-394.
[26] [26] DEMIRELH, ANBARJAFARIG. Discrete wavelet transform-based satellite image resolution enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):1997-2004.
[27] [27] MUTHUKRISHNANA, KUMARD V, KanagarajM. Internet of image things-discrete wavelet transform and Gabor wavelet transform based image enhancement resolution technique for IoT satellite applications[J]. Cognitive Systems Research, 2019, 57: 46-53.
[28] [28] WITWITW,ZHAOY,JENKINSK,et al. Satellite image resolution enhancement using discrete wavelet transform and new edge-directed interpolation[J].Journal of Electronic Imaging,2017, 26(2):1-9. DOI: 10.1117/1.JEI.26.2.023014
[29] [29] IRANIM, PELEGS. Improving resolution by image registration[J]. CVGIP: Graphical Models and Image Processing, 1991, 53(3): 231-239.
[30] [30] DONGW, ZHANGL, SHIG, et al. Nonlocal back-projection for adaptive image enlargement[C]∥2009 16th IEEE International Conference on Image Processing (ICIP). IEEE, 2009: 349-352.
[31] [31] CHOIJ S, BAES H, KIMM. Single image super-resolution based on self-examples using context-dependent subpatches[C]∥2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015: 2835-2839.
[32] [32] LIANGX, GANZ. Improved non-local iterative back-projection method for image super-resolution[C]∥2011 Sixth International Conference on Image and Graphics.IEEE,2011: 176-181.
[33] [33] FANYaqiong.Research on image super-resolution reconstruction based on non-local similarity[D].Nanjing:Nanjing University of Posts and Telecommunications,2012.
[34] [34] GUOWeiwei,ZHANGPinzheng.Super-resolution image reconstruction with iterative back projection algorithm[J].Journal of Frontiers of Computer Science and Technology,2009,3(3):321-329.
[35] [35] GUOTongyu. Super resolution reconstruction of remote sensing image based on Improved Iterative Back Preojection Algorithm[J]. Geomatics & Spatial Information Technology,2019,42(1):195-197.
[36] [36] QINF. An improved super resolution reconstruction method based on initial value estimation[C]∥2010 3rd International Congress on Image and Signal Processing. IEEE, 2010, 2: 826-829.
[37] [37] STARKH, OSKOUIP. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 1989, 6(11): 1715-1726.
[38] [38] TANGZ, DENGM, XIAOC, et al. Projection onto convex sets super-resolution image reconstruction based on wavelet bi-cubic interpolation[C]∥Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. IEEE, 2011, 1: 351-354.
[39] [39] SHANGL, LIUS, SUNZ. Image super-resolution reconstruction based on sparse representation and POCS method[C]∥Intelligent Computing Theories and Methodologies: 11th International Conference, ICIC2015, Fuzhou, China, August 20-23, 2015, Proceedings, Part I 11. Springer International Publishing, 2015: 348-356.
[40] [40] XIH, XIAOC, BIANC. Edge halo reduction for projections onto convex sets super resolution image reconstruction[C]∥2012 International Conference on Digital Image Computing Techniques and Applications (DICTA). IEEE, 2012: 1-7.
[41] [41] BAIXu,BULijing,ZHAOGuochen,et al. POCS image super-resolution reconstruction method based on multi-feature[J]. Science of Surveying and Mapping,2022,47(12):174-83.
[42] [42] FANGYaoxin,GUOBaofeng,MaChao. Super-resolution reconstruction of remote sensing images based on the improved point spread function[J]. Laser Technology,2019,43(5):123-128
[43] [43] ZHAZ, LIUH, LIJ. Based on the technique of regularization MAP super-resolution image reconstruction algorithm[C]∥2014 Seventh International Symposium on Computational Intelligence and Design. IEEE, 2014, 1: 31-34.
[44] [44] ZHANGH, ZHANGL, SHENH, et al. A MAP approach for joint image registration, blur identification and super resolution[C]∥2009 Fifth International Conference on Image and Graphics. IEEE, 2009: 97-102.
[45] [45] SCHULTZR R, STEVENSONR L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(3): 233-242.
[46] [46] ELADM, FEUERA. Super-resolution reconstruction of image sequences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(9): 817-834.
[47] [47] LIZhan. Research on Spatial Super-Resolution Image Reconstruction Algorithms[D]. Guangzhou: South China University of Technology,2012.
[48] [48] BAKERS,KANADET. Limits on super-resolution and how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167-1183.
[49] [49] YANGD, LIZ, XIAY, et al. Remote sensing image super-resolution: Challenges and approaches[C]∥2015 IEEE international Conference on Digital Signal Processing(DSP).IEEE,2015: 196-200.
[50] [50] CHANGH, YEUNGD Y, XIONGY. Super-resolution through neighbor embedding[C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, 2004, 1: I-I.
[51] [51] SUK,TIANQ,XUEQ, et al. Neighborhood issue in single-frame image super-resolution[C]∥2005 IEEE International Conference on Multimedia and Expo. IEEE, 2005: 4 pp.
[52] [52] CHANT M, ZHANGJ. An improved super-resolution with manifold learning and histogram matching[C]∥Advances in Biometrics: International Conference, ICB2006, Hong Kong, China, January 5-7, 2006. Proceedings. Springer Berlin Heidelberg, 2005: 756-762.
[53] [53] ZHANGH, ZHANGL, SHENH, et al. A MAP approach for joint image registration, blur identification and super resolution[C]∥2009 Fifth International Conference on Image and Graphics. IEEE, 2009: 97-102.
[54] [54] ZHANGK, GAOX, LIX, et al. Partially supervised neighbor embedding for example-based image super-resolution[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 5(2): 230-239.
[55] [55] GAOX, ZHANGK, TAOD, et al. Joint learning for single-image super-resolution via a coupled constraint[J]. IEEE Transactions on Image Processing, 2011, 21(2): 469-480.
[56] [56] CHANT M, ZHANGJ, PUJ, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J]. Pattern Recognition Letters, 2009, 30(5): 494-502.
[57] [57] ELHAMIFARE, VIDALR. Sparse manifold clustering and embedding[J]. Advances in Neural Information Processing Systems, 2011, 24:55-63.
[58] [58] YANGJ, WRIGHTJ, HUANGT S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
[59] [59] YANGJ, WANGZ, LINZ, et al. Coupled dictionary training for image super-resolution[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467-3478.
[60] [60] YANGS, WANGM, CHENY, et al. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4016-4028.
[61] [61] ZEYDER, ELADM, PROTTERM. On single image scale-up using sparse-representations[C]∥Curves and Surfaces: 7th International Conference,Avignon,France,June24-30,2010,Revised Selected Papers7. Springer Berlin Heidelberg,2012:711-730.
[62] [62] TIMOFTER, DE SMETV, VAN GOOLL. Anchored neighborhood regression for fast example-based super-resolution[C]∥Proceedings of the IEEE International Conference on Computer Vision, 2013: 1920-1927.
[63] [63] ZHENGZ H, WANGB, SUNK. Single remote sensing image super-resolution and denoising via sparse representation[C]∥2011 International Workshop on Multi-platform/multi-sensor Remote Sensing and Mapping. IEEE, 2011: 1-5.
[64] [64] LIUS, ZHUY, XUEL. Remote sensing image super-resolution method using sparse representation and classified texture patches[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 578-582.
[65] [65] YANGXue,LIFeng,LUMing,et al. New Super-resolution reconstruction method based on Mixed Sparse Representations[J]. National Remote Sensing Bulletin,2022,26(8):1685-1697.
[66] [66] SYRRISV, FERRIS, EHRLICHD, et al. Image enhancement and feature extraction based on low-resolution satellite data[J]. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing, 2015, 8(5): 1986-1995.
[67] [67] AGUSTSSONE, TIMOFTER. Ntire 2017 challenge on single image super-resolution: Dataset and study[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 126-135.
[68] [68] LIM B, SON S, KIMH, et al. Enhanced deep residual networks for single image super-resolution[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 136-144.
[69] [69] ZHANGM, TECK MAK, HWEELIM J, et al. Deep future gaze: Gaze anticipation on egocentric videos using adversarial networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4372-4381.
[70] [70] KARRAST, LAINES, AILAT. A style-based generator architecture for generative adversarial networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 4401-4410.
[71] [71] KARRAST.Progressive Growing of GANs for Improved Quality,Stability,and Variation[J].arXiv Preprint arXiv:1710. 10196, 2017. DOI:10.48550/arXiv.1710.10196
[72] [72] BEVILACQUAM, ROUMYA, GUILLEMOTC, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]∥British Machine Vision Conference (BMVC), 2012: 1-10. DOI: 10.5244/C.26.135
[73] [73] MARTIND, FOWLKESC, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]∥Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. IEEE, 2001, 2: 416-423.
[74] [74] HUANGJ B, SINGHA, AHUJAN. Single image super-resolution from transformed self-exemplars[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5197-5206.
[75] [75] XIAG S, HUJ, HUF, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.
[76] [76] YANGY, NEWSAMS. Bag-of-visual-words and spatial extensions for land-use classification[C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010: 270-279.
[77] [77] DAID, YANGW. Satellite image classification via two-layer sparse coding with biased image representation[J]. IEEE Geoscience and Remote Sensing Letters,2010,8(1):173-176.
[78] [78] CHENGG,HANJ,LUX. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.
[79] [79] FENGQuanlong,CHENBoan,LIGuoqing,et al. A review for sample datasets of remote sensing imagery. National Remote Sensing Bulletin,2022,26(4):589-605.冯权泷,陈泊安,李国庆,等.遥感影像样本数据集研究综述[J].遥感学报,2022,26(4):589-605.
[80] [80] LECUNY, BENGIOY, HINTONG. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[81] [81] KRIZHEVSKYA,SUTSKEVERI,HINTONG E. Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25.
[82] [82] SZEGEDYC, LIUW, JIAY, et al. Going deeper with convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015: 1-9.
[83] [83] DONGC, LOYC C, HEK, et al. Learning a deep convolutional network for image super-resolution[C]∥Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September6-12, 2014, Proceedings, Part IV13. Springer International Publishing, 2014: 184-199.
[84] [84] DONGC, LOYC C, HEK, et al. Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307.
[85] [85] KIMJ, LEEJ K, LEEK M. Accurate image super-resolution using very deep convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016: 1646-1654.
[86] [86] KIMJ, LEEJ K, LEEK M. Deeply-recursive convolutional network for image super-resolution[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1637-1645.
[87] [87] LIM B, SON S, KIMH, et al. Enhanced deep residual networks for single image super-resolution[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017: 136-144.
[88] [88] LIEBELL, KÖRNERM. Single-image super resolution for multispectral remote sensing data using convolutional neural networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41: 883-890.
[89] [89] TUNAC, UNALG, SERTELE. Single-frame super resolution of remote-sensing images by convolutional neural networks[J]. International Journal of Remote Sensing, 2018, 39(8): 2463-2479.
[90] [90] HUANGN, YANGY, LIUJ, et al. Single-image super-resolution for remote sensing data using deep residual-learning neural network[C]∥Neural Information Processing: 24th International Conference, ICONIP2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24. Springer International Publishing, 2017: 622-630.
[91] [91] LEIS, SHIZ, ZOUZ. Coupled adversarial training for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,58(5):3633-3643.
[92] [92] WANGT,SUNW,QIH,et al. Aerial image super resolution via wavelet multiscale convolutional neural networks[J].IEEE Geoscience and Remote Sensing Letters,2018,15(5):769-773.
[93] [93] TAIY, YANGJ, LIUX. Image super-resolution via deep recursive residual network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3147-3155.
[94] [94] MAW, PANZ, GUOJ, et al. Achieving super-resolution remote sensing images via the wavelet transform combined with the recursive res-net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3512-3527.
[95] [95] WAGNERL, LIEBELL, KÖRNERM. Deep residual learning for single-image super-resolution of multi-spectral satellite imagery[J]. International Society for Photogrammetry and Remote Sensing Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4: 189-196.
[96] [96] TONGT, LIG, LIUX, et al. Image super-resolution using dense skip connections[C]∥Proceedings of the IEEE International Conference on Computer Vision. 2017: 4799-4807.
[97] [97] ZHANGD, SHAOJ, LIX, et al. Remote sensing image super-resolution via mixed high-order attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6): 5183-5196.
[98] [98] MEIS, YUANX, JIJ, et al. Hyperspectral image spatial super-resolution via 3D full convolutional neural network[J]. Remote Sensing,2017,9(11):1139. DOI:10.3390/rs9111139
[99] [99] WAGNERL, LIEBELL, KÖRNERM. Deep residual learning for single-image super-resolution of multi-spectral satellite imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4: 189-196.
[100] [100] MÜLLERM U,EKHTIARIN,ALMEIDAR M,et al.Super-resolution of multispectral satellite images using convolutional neural networks[J].arXiv Preprint,2020. DOI:10.48550/arXiv. 2002.00580
[101] [101] GOODFELLOWI, POUGET-ABADIEJ, MIRZAM, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27:2672-2680.
[102] [102] LEDIGC, THEISL, HUSZÁRF, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4681-4690.
[103] [103] JIANGK,WANGZ,YIP,et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5799-5812.
[104] [104] WUB, DUANH, LIUZ, et al. SRPGAN: perceptual generative adversarial network for single image super resolution[J]. arXiv preprint,2017.DOI:10.48550/arXiv. 1712.05927
[105] [105] HUANGZ X,JINGC W. Super-resolution reconstruction method of remote sensing image based on multi-feature fusion[J]. IEEE Access, 2020, 8: 18764-18771.
[106] [106] WANGX,YUK, WUS, et al. Esrgan: Enhanced super-resolution generative adversarial networks[C]∥Proceedings of the European Conference on Computer Vision(ECCV) Workshops. 2018: 0-0.
[107] [107] MAOQ, WANGS, WANGS, et al. Enhanced image decoding via edge-preserving generative adversarial networks[C]∥2018 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2018: 1-6.
[108] [108] JIANGK, WANGZ, YIP, et al. Edge-enhanced GAN for remote sensing image superresolution[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(8):5799-5812.
[109] [109] WANGZ, JIANGK, YIP, et al. Ultra-dense GAN for satellite imagery super-resolution[J]. Neurocomputing, 2020, 398: 328-337.
[110] [110] SUSTIKAR, SUKSMONOA B, DANUDIRDJOD, et al. Generative adversarial network with residual dense generator for remote sensing image super resolution[C]∥2020 International Conference on Radar,Antenna, Microwave,Electronics,and Telecommunications (ICRAMET). IEEE, 2020: 34-39.
[111] [111] LIUB, LIH, ZHOUY, et al. A super resolution method for remote sensing images based on cascaded conditional Wasserstein GANs[C]∥2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 2020: 284-289.
[112] [112] DENGJ, HONGD, LIC, et al. Joint super-resolution and segmentation for 1-m impervious surface area mapping in China's Yangtze River economic belt[J].arXiv preprint,2025.DOI:10.48550/arXiv. 2505.05367
[113] [113] GUOD, XIAY, XUL, et al. Remote sensing image super-resolution using cascade generative adversarial nets[J]. Neurocomputing, 2021, 443: 117-130.
[114] [114] HUY, LIJ, HUANGY, et al. Channel-wise and spatial feature modulation network for single image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3911-3927.
[115] [115] WOO S, PARKJ, LEEJ Y, et al. Cbam: Convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision(ECCV),2018: 3-19.
[116] [116] CHENGX, LIX, YANGJ, et al. SESR: Single image super resolution with recursive squeeze and excitation networks[C]∥2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 147-152.
[117] [117] KIMJ H, CHOIJ H, CHEONM, et al. Ram: Residual attention module for single image super-resolution[J]. arXiv preprint arXiv:1811.12043, 2018, 2(1): 2.
[118] [118] ZHANGY, LIK, LIK, et al. Image super-resolution using very deep residual channel attention networks[C]∥Proceedings of the European Conference on Computer Vision(ECCV),2018: 286-301.
[119] [119] GUJ, SUNX, ZHANGY, et al. Deep residual squeeze and excitation network for remote sensing image super-resolution[J]. Remote Sensing,2019,11(15):1817. DOI: 10.3390/rs 11151817
[120] [120] HAUTJ M,FERNANDEZ-BELTRANR,PAOLETTIM E,et al. Remote sensing image superresolution using deep residual channel attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9277-9289.
[121] [121] WANGX, WUY, MINGY, et al. Remote sensing imagery super resolution based on adaptive multi-scale feature fusion network[J]. Sensors, 2020, 20(4): 1142.DOI: 10.3390/s20041142
[122] [122] ZHANGD, SHAOJ, LIX, et al. Remote sensing image super-resolution via mixed high-order attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6): 5183-5196.
[123] [123] MOUSTAFAM S, SAYEDS A. Satellite imagery super-resolution using squeeze-and-excitation-based GAN[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(6): 1481-1492.
[124] [124] WANGH, HUQ, WUC, et al. Non-locally up-down convolutional attention network for remote sensing image super-resolution[J]. IEEE Access, 2020, 8: 166304-166319.DOI: 10.1109/ACCESS.2020.3022882
[125] [125] CHENL,LIUH,YANGM,et al.Remote sensing image super-resolution via residual aggregation and split attentional fusion network[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9546-9556.
[126] [126] HUIZ, GAOX, YANGY, et al. Lightweight image super-resolution with information multi-distillation network[C]∥Proceedings of the 27th Acm International Conference on Multimedia. 2019: 2024-2032.
[127] [127] WANGZ, LIL, XUEY, et al. FeNet: Feature enhancement network for lightweight remote-sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
[128] [128] SOHL-DICKSTEINJ, WEISSE, MAHESWARANATHANN, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]∥International Conference on Machine Learning. PMLR, 2015: 2256-2265.
[129] [129] HO J, JAINA, ABBEELP. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851.
[130] [130] KONGZ, PINGW, HUANGJ, et al. Diffwave: A versatile diffusion model for audio synthesis[J]. arXiv preprint,2020.DOI:10.48550/arXiv. 2009.09761
[131] [131] MITTALG, ENGELJ, HAWTHORNEC, et al. Symbolic music generation with diffusion models[J].arXiv preprint,2021.DOI:10.48550/arXiv. 2103.16091
[132] [132] LUOS, HUW. Diffusion probabilistic models for 3d point cloud generation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:2837-2845.
[133] [133] LIH, YANGY, CHANGM, et al. Srdiff: Single image super-resolution with diffusion probabilistic models[J]. Neurocomputing, 2022, 479: 47-59.
[134] [134] SONGJ, MENGC, ERMONS. Denoising diffusion implicit models[J].arXiv preprint,2020.DOI:10.48550/arXiv. 2010. 02502
[135] [135] KONGZ, PINGW. On fast sampling of diffusion probabilistic models[J]. arXiv preprint,2021.DOI:10.48550/arXiv. 2106. 00132
[136] [136] LIUJ, YUANZ, PANZ, et al. Diffusion model with detail complement for super-resolution of remote sensing[J]. Remote Sensing,2022,14(19):4834. DOI:10.3390/rs14194834
[137] [137] HANL, ZHAOY, LÜH, et al. Enhancing remote sensing image super-resolution with efficient hybrid conditional diffusion model[J]. Remote Sensing, 2023, 15(13):2672-2680.
[138] [138] XIAOY, YUANQ, JIANGK, et al. EDiffSR: An efficient diffusion probabilistic model for remote sensing image super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023,62:1-4.
[139] [139] MITTALA, SOUNDARARAJANR, BOVIKA C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
[140] [140] BLAUY, MECHREZR, TIMOFTER, et al. The 2018 PIRM challenge on perceptual image super-resolution[C]∥Proceedings of the European Conference on Computer Vision (ECCV) Workshops,2018.DOI:10.48550/arXiv.1809.07517
[141] [141] HEWenlei,WANGChaoli,SUNZhanquan.Super-resolution reconstruction of satellite imagery based on generative adversarial Network[J].Information and Control,2021,50(2):195-203.
Get Citation
Copy Citation Text
Chengquan ZOU, Jiangcheng HUANG, Zhengbao SUN, Yutong YANG. Super-Resolution Reconstruction Methods for Remote Sensing Images: A Review and Experiments[J]. Remote Sensing Technology and Application, 2025, 40(4): 969
Category:
Received: Sep. 16, 2024
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Zhengbao SUN (zbsun@ynu.edu.cn)