Remote Sensing Technology and Application, Volume. 40, Issue 4, 969(2025)

Super-Resolution Reconstruction Methods for Remote Sensing Images: A Review and Experiments

Chengquan ZOU1, Jiangcheng HUANG1, Zhengbao SUN2、*, and Yutong YANG3
Author Affiliations
  • 1Institute of International Rivers and Eco-Security, Yunnan University, Kunming650500, China
  • 2School of Engineering, Yunnan University,Kunming650500, China
  • 3School of Earth Sciences, Yunnan University,Kunming650500, China
  • show less
    Figures & Tables(19)
    Development of super resolution methods for remote sensing images
    Schematic diagram of interpolated image super-resolution reconstruction
    Schematic diagram of super-resolution reconstruction of reconstructed images
    Schematic diagram of image super-resolution reconstruction using shallow learning
    Schematic diagram of the basic structure of SRCNN
    Structure diagram of residual block
    Schematic diagram of recursive block structure
    Schematic diagram of the basic structure of SRGAN
    Schematic diagram of attention mechanism module
    Schematic diagram of the diffusion Probabilistic model
    Histogram of the result evaluation scores of each super-resolution reconstruction method
    Qualitative comparison of ×4 super-resolution reconstruction of NWPU-RESISC45 Dataset (wetland-028) images by different SR methods
    Qualitative comparison of ×4 super-resolution reconstruction of NWPU-RESISC45 Dataset (wetland-160) images by different SR methods
    Qualitative comparison of ×4 super-resolution reconstruction of NWPU-RESISC45 Dataset (wetland-360) images by different SR methods
    Qualitative comparison of ×4 super-resolution reconstruction of NWPU-RESISC45 Dataset (wetland-169) images by different SR methods
    • Table 1. Commonly used data sets based on deep learning super-resolution models

      View table
      View in Article

      Table 1. Commonly used data sets based on deep learning super-resolution models

      数据集名称分辨率

      样本

      数量

      格式内容
      DIV2K2 560✕1 4401 000PNG人物、动物、风景等
      Flickr2K2 560✕1 4402 650PNG人物、动物、风景等
      OST553✕44010 624PNG户外场景
      FFHQ1 024✕1 02470 000PNG人脸
      CelebA-HQ1 024✕1 02430 000JPG人脸
      Set5512✕5125PNG人物、自然场景等
      Set14500✕48014PNG人物、自然场景等
      BSD100481✕321100JPG自然场景
      Urban100984✕797100PNG城市街景
      AID600✕60010 000JPG自然场景
      UC Merced256✕2562 100PNG自然场景
      WHU-RS19600✕6001 005TIF自然场景
      NWPU-RESISC45256✕25631 500PNG自然场景
    • Table 2. Training parameter configuration

      View table
      View in Article

      Table 2. Training parameter configuration

      实验环境/参数软/硬件型号及参数
      操作系统Windows11
      CPU英特尔® Xeon(R) Gold 6248 2.99GHz
      GPUNVIDIA GTX A5000 24GB
      内存64GB
      CUDAV11.7
      torch2.0.1-gpu
      python3.9
      迭代次数10 000
      批次16
      初始学习率lr00.000 1
      学习率lr0.01
      优化器Adam
      线程数8
    • Table 3. Quantitative comparison of results of various super-resolution reconstruction methods

      View table
      View in Article

      Table 3. Quantitative comparison of results of various super-resolution reconstruction methods

      类别方法PSNR↑SSIM↑LPIPS↓NIQE↓PI↓
      插值Bicubic29.320.670.44277.10957.7862

      CNN

      SRCNN25.550.530.39939.80298.3432
      VDSR26.100.550.26098.17316.9092
      DRRN33.890.870.18417.18866.1021
      GANSRGAN26.050.540.20484.00193.8272
      ESRGAN26.580.570.15305.41974.1732
      DDPMEDiffSR27.680.610.13064.22003.8162
    • Table 4. Parameters and average inference time of different models

      View table
      View in Article

      Table 4. Parameters and average inference time of different models

      方法网络结构参数量(M)平均推理时间/ms是否支持实时部署
      Bicubic--< 1
      SRCNNCNN57K3.20
      VDSRResNet0.678.50×
      SRGANGAN16.736.10×
      ESRGANGAN48.623.54×
      EDiffSRDiffusion23.550.30×
    Tools

    Get Citation

    Copy Citation Text

    Chengquan ZOU, Jiangcheng HUANG, Zhengbao SUN, Yutong YANG. Super-Resolution Reconstruction Methods for Remote Sensing Images: A Review and Experiments[J]. Remote Sensing Technology and Application, 2025, 40(4): 969

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 16, 2024

    Accepted: --

    Published Online: Aug. 26, 2025

    The Author Email: Zhengbao SUN (zbsun@ynu.edu.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.0969

    Topics