Optical Instruments, Volume. 44, Issue 4, 57(2022)
Surface energy transfer and metal regulated spontaneous emission of single fluorescent molecules in bimetallic core-shell nanostructures
[1] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).
[2] [2] MAIER S A. Plasmonics: fundamentals applications[M]. New Yk: Springer, 2007: 6588.
[3] ZHANG J X, ZHANG L D. Nanostructures for surface plasmons[J]. Advances in Optics and Photonics, 4, 157-321(2012).
[4] KOLWAS K, DERKACHOVA A, SHOPA M. Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1490-1501(2009).
[5] BAKHTI S, DESTOUCHES N, TISHCHENKO A V. Singular representation of plasmon resonance modes to optimize the near- and far-field properties of metal nanoparticles[J]. Plasmonics, 10, 1391-1399(2015).
[6] GARAEI M A, SALIMINASAB M, NADGARAN H, et al. A hybrid plasmonic bimetallic nanoshell-microsphere sensor for cancer market protein detection[J]. Plasmonics, 12, 1953-1960(2017).
[7] KABURCUK F, DUMAN Ç. Analysis of light scattering from anisotropic particles using FDTD method[J]. Journal of Modern Optics, 66, 1777-1783(2019).
[8] L-VIGER M, BROUARD D, BOUDREAU D. Plasmon-enhanced resonance energy transfer from a conjugated polymer to fluorescent multilayer core−shell nanoparticles: a photophysical study[J]. The Journal of Physical Chemistry C, 115, 2974-2981(2011).
[9] FUCHS R, BARRERA R G. Dynamical response of a dipole near the surface of a nonlocal metal[J]. Physical Review B, 24, 2940-2950(1981).
[10] IMANI M, MOHAJERI N, RASTEGAR M, et al. Recent advances in FRET-Based biosensors for biomedical applications[J]. Analytical Biochemistry, 630, 114323(2021).
[11] GAINULLIN I K. Resonant charge transfer during ion scattering on metallic surfaces[J]. Physics-Uspekhi, 63, 888-906(2020).
[12] WU N Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review[J]. Nanoscale, 10, 2679-2696(2018).
[13] SEN T, PATRA A. Recent advances in energy transfer processes in gold-nanoparticle-based assemblies[J]. The Journal of Physical Chemistry C, 116, 17307-17317(2012).
[14] SUKHAREV V M, FREIFELD N, NITZAN A. Numerical calculations of radiative and non-radiative relaxation of molecules near metal particles[J]. The Journal of Physical Chemistry C, 118, 10545-10551(2014).
[15] PERSSON B N J, LANG N D. Electron-hole-pair quenching of excited states near a metal[J]. Physical Review B, 26, 5409-5415(1982).
[16] ALIVISATOS A P, WALDECK D H, HARRIS C B. Nonclassical behavior of energy transfer from molecules to metal surfaces: biacetyl(3
[17] GAUDREAU L, TIELROOIJ K J, PRAWIROATMODJO G E D K, et al. Universal distance-scaling of nonradiative energy transfer to graphene[J]. Nano Letters, 13, 2030-2035(2013).
[18] LIU M J, XING Z P, LI Z Z, et al. Recent advances in core–shell metal organic frame-based photocatalysts for solar energy conversion[J]. Coordination Chemistry Reviews, 446, 214123(2021).
[19] MULLA R, DUNNILL C W. Core–shell nanostructures for better thermoelectrics[J]. Materials Advances, 3, 125-141(2022).
[20] YAN M, LIANG K, ZHAO D Y, et al. Core-shell structured micro-nanomotors: construction, shell functionalization, applications, and perspectives[J]. Small, 18, 2102887(2022).
[21] PRODAN E, RADLOFF C, HALAS N J, et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 302, 419-422(2003).
[22] PRODAN E, NORDLANDER P. Plasmon hybridization in spherical nanoparticles[J]. The Journal of Chemical Physics, 120, 5444-5454(2004).
[23] AVERITT R D, WESTCOTT S L, HALAS N J. Linear optical properties of gold nanoshells[J]. Journal of the Optical Society of America B, 16, 1824-1832(1999).
[24] TEPERIK T V, POPOV V V, DE ABAJO F J G. Radiative decay of plasmons in a metallic nanoshell[J]. Physical Review B, 69, 155402(2004).
[25] HODAK J H, HENGLEIN A, GIERSIG M, et al. Laser-induced inter-diffusion in auag core-shell nanoparticles[J]. The Journal of Physical Chemistry B, 104, 11708-11718(2000).
[26] STEPHANIE R, KIM M W, KIM S H, et al. Recent advances of bimetallic nanomaterials and its nanocomposites for biosensing applications[J]. TrAC Trends in Analytical Chemistry, 135, 116159(2021).
[27] KUMAR G V P, SHRUTHI S, VIBHA B, et al. Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced raman scattering studies of biomolecules[J]. The Journal of Physical Chemistry C, 111, 4388-4392(2007).
[28] ZHU J, LI J J, ZHAO J W. The effect of dielectric coating on the local electric field enhancement of Au-Ag core-shell nanoparticles[J]. Plasmonics, 10, 1-8(2015).
[29] HAO F, NORDLANDER P, BURNETT M T, et al. Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities[J]. Physical Review B, 76, 245417(2007).
[30] LU L H, WANG H S, ZHOU Y H, et al. Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties[J]. Chemical Communications, 144-145(2002).
[31] ALBRYCHT P, AL-OTAIBI J S, MARY Y S, et al. Surface enhanced Raman scattering investigation of pioglitazone on silver and silver-gold metal substrates-experimental analysis and theoretical modeling[J]. Journal of Molecular Structure, 1244, 130992(2021).
[32] DANESHFAR N, BAZYARI K. Optical and spectral tunability of multilayer spherical and cylindrical nanoshells[J]. Applied Physics A, 116, 611-620(2014).
[33] LAKOWICZ J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission[J]. Analytical Biochemistry, 337, 171-194(2005).
Get Citation
Copy Citation Text
Zhao LI, Jun ZHOU, Xiantong YU. Surface energy transfer and metal regulated spontaneous emission of single fluorescent molecules in bimetallic core-shell nanostructures[J]. Optical Instruments, 2022, 44(4): 57
Category: DESIGN AND RESEARCH
Received: Dec. 24, 2021
Accepted: --
Published Online: Oct. 19, 2022
The Author Email: Xiantong YU (xtyu@usst.edu.cn)