Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 2, 707(2025)
Application and Performance Requirements of Glass Substrates in Chip Packaging
[1] [1] MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85.
[3] [3] MOORE. Progress in digital integrated electronics[J]. International Electron Devices Meeting, 1975: 11-13.
[14] [14] BRUSBERG L, SCHRDER H, TPPER M, et al. Photonic system-in-package technologies using thin glass substrates[C]//2009 11th Electronics Packaging Technology Conference. December 9-11, 2009, Singapore. IEEE, 2009: 930-935.
[15] [15] SCHRDER H, BRUSBERG L, ARNDT-STAUFENBIEL N, et al. Glass panel processing for electrical and optical packaging[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC). May 31-June 3, 2011, Lake Buena Vista, FL, USA. IEEE, 2011: 625-633.
[16] [16] CHIEN C H, YU H, LEE C K, et al. Performance and process characteristic of glass interposer with through-glass-via(TGV)[C]//2013 IEEE International 3D Systems Integration Conference (3DIC). October 2-4, 2013, San Francisco, CA, USA. IEEE, 2013: 1-7.
[17] [17] SUKUMARAN V, BANDYOPADHYAY T, SUNDARAM V, et al. Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(9): 1426-1433.
[18] [18] SUKUMARAN V, KUMAR G, RAMACHANDRAN K, et al. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(5): 786-795.
[19] [19] LAAKSO M J, BLEIKER S J, LILJEHOLM J, et al. Through-glass vias for glass interposers and MEMS packaging applications fabricated using magnetic assembly of microscale metal wires[J]. IEEE Access, 1886, 6: 44306-44317.
[20] [20] QIAN L B, XIA Y S, SHI G, et al. Electrical-thermal characterization of through packaging vias in glass interposer[J]. IEEE Transactions on Nanotechnology, 2017, 16(6): 901-908.
[21] [21] ZHONG Y, BAO S C, HE Y M, et al. Heterogeneous integration of diamond-on-chip-on-glass interposer for efficient thermal management[J]. IEEE Electron Device Letters, 2024, 45(3): 448-451.
[22] [22] CHENG L, CHEN Z H, YU D Q, et al. A high-efficiency transformer-in-package isolated DC-DC converter using glass-based fan-out wafer-level packaging[J]. Fundamental Research, 2023: 1407-141.
[24] [24] LIU C H, LU R K, CHUNG H, et al. Glass-embedded fan-out antenna-in-packaging for 5G millimeter wave applications[J]. International Journal of Integrated Engineering, 2022, 14(6): 019.
[25] [25] LI G J, FU R L, AGATHOPOULOS S, et al. Ultra-low thermal expansion coefficient of PZB/β-eucryptite composite glass for MEMS packaging[J]. Ceramics International, 2020, 46(6): 8385-8390.
[26] [26] WU J, ZHANG H, IKEHASHI T. Fabrication of low-resonant-frequency inertial MEMS using through-silicon DRIE applied to silicon-on-glass[J]. Japanese Journal of Applied Physics, 2024, 63(5): 056501.
[27] [27] SZYSZKA P, JENDRYKA J, SOBKW J, et al. MEMS quadrupole mass spectrometer[J]. Sensors and Actuators B: Chemical, 2024, 411: 135712.
[28] [28] ROOIJEN N V, ALONSO-DELPINO M, BUENOO J, et al. A core-shell lens for antenna on-package integration at D-band[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(8): 6195-6208.
[29] [29] LIU Y, LUK K M. An optically transparent magneto-electric dipole antenna design by integrating flexible transparent metal mesh film on glass[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(7): 5569-5577.
[30] [30] BARTLETT C, MALAVE A, LETZ M, et al. D-band corrugated horn antenna using multi-layer structured-glass technology[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(9): 2792-2796.
[38] [38] RAMKUMAR J, SUDARSAN V, CHANDRAMOULEESWARAN S, et al. Structural studies on boroaluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2008, 354(15/16): 1591-1597.
[39] [39] ZHANG X H, YUE Y L, WU H T. Effects of cation field strength on structure and properties of boroaluminosilicate glasses[J]. Materials Research Innovations, 2013, 17(3): 212-217.
[40] [40] CHEN Z Y, GUO M F, ZHANG R, et al. Measurement and isolation of thermal stress in silicon-on-glass MEMS structures[J]. Sensors, 2018, 18(8): 2603.
[41] [41] JOO J W, CHOA S H. Deformation behavior of MEMS gyroscope sensor package subjected to temperature change[J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(2): 346-354.
[42] [42] CUI M, HUANG Y, WANG W, et al. MEMS gyroscope temperature compensation based on drive mode vibration characteristic control[J]. Micromachines, 2019, 10(4): 248.
[49] [49] NIMBALKAR P, BHASKAR P, KATHAPERUMAL M, et al. A review of polymer dielectrics for redistribution layers in interposers and package substrates[J]. Polymers, 2023, 15(19): 3895.
[50] [50] BAKER-JARVIS J, JANEZIC M, RIDDLE B, et al. Dielectric and conductor-loss characterization and measurements on electronic packaging materials: NIST Technical Note 1520[R]. USA: National Institute of standards and Technology, 2001.
[53] [53] CHOI K, KIM S W, LEE J H, et al. Eco-friendly glass wet etching for MEMS application: a review[J]. Journal of the American Ceramic Society, 2024, 107(10): 6497-6515.
Get Citation
Copy Citation Text
ZHANG Xingzhi, TIAN Yingliang, ZHAO Zhiyong, ZHANG Xun, WANG Ruzhi. Application and Performance Requirements of Glass Substrates in Chip Packaging[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 707
Received: Aug. 5, 2024
Accepted: Mar. 31, 2025
Published Online: Mar. 31, 2025
The Author Email: TIAN Yingliang (tianyl@bjut.edu.cn)