Journal of Inorganic Materials, Volume. 39, Issue 6, 697(2024)
[1] FENG L, FAHRENHOLTZ W G, HILMAS G E et al. Processing of dense high-entropy boride ceramics[J]. Journal of the European Ceramic Society, 40, 3815(2020).
[2] MAYRHOFER P H, KIRNBAUER K, ERTELTHALER P et al. High-entropy ceramic thin films; A case study on transition metal diborides[J]. Scripta Materialia, 149: 93(2018).
[3] XIANG H M, XING Y, DAI F Z et al. High-entropy ceramics: present status, challenges, and a look forward[J]. Journal of Advanced Ceramics, 10, 385(2021).
[4] ZHAO P B, ZHU J B, LI M L et al. Theoretical and experimental investigations on the phase stability and fabrication of high-entropy monoborides[J]. Journal of European Ceramic Society, 43, 2320(2023).
[5] ZHANG W M, DAI F Z, XIANG H M et al. Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2)[J]. Journal of Advanced Ceramics, 10, 1299(2021).
[6] BACKMAN L, GILD J, LUO J et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials[J]. Acta Materialia, 197: 20(2020).
[7] FENG L, FAHRENHOLTZ W G, BRENNER D W et al. High- entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments[J]. Annual Review of Materials Research, 51, 165(2021).
[8] STORR B, MOORE L, CHAKRABARTY K et al. Properties of high entropy borides synthesized
[9] ZHAO P B, ZHU J B, YANG K J et al. Outstanding wear resistance of plasma sprayed high-entropy monoboride composite coating by inducing phase structural cooperative mechanism[J]. Applied Surface Science, 616: 156516(2023).
[10] GILD J, ZHANG Y, HARRINGTON T et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Scientific Reports, 6: 37946(2016).
[11] QIAO L J, LIU Y, GAO Y et al. First-principles prediction, fabrication and characterization of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high- entropy borides[J]. Ceramics International, 48, 17234(2022).
[12] TALLARITA G, LICHERI R, GARRONI S et al. High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: a comparative investigation[J]. Journal of the European Ceramic Society, 40, 842(2019).
[13] WUCHINA E, OPILA E, OPEKA M et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications[J]. The Electrochemical Society Interface, 16, 30(2007).
[14] FAHRENHOLTZ W G, HILMAS G E, TALMY I et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 90, 1347(2007).
[16] ZHANG Y, GUO W M, JIANG Z B et al. Dense high-entropy boride ceramics with ultra-high hardness[J]. Scripta Materialia, 164: 135(2019).
[17] ZHANG Y, JIANG Z B, SUN S K et al. Microstructure and mechanical properties of high-entropy borides derived from boro/ carbothermal reduction[J]. Journal of European Ceramic Society, 39, 3920(2021).
[18] MA H B, LIU H L, ZHAO J et al. Pressureless sintering, mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C[J]. Journal of European Ceramic Society, 35, 2699(2015).
[19] MEUMAN E W, HILMAS G E, FAHRENHOLTZ W G. Processing, microstructure, and mechanical properties of zirconium diboride- boron carbide ceramics[J]. Ceramics International, 43, 6942(2017).
[20] ZHAO J, LI Q G, CAO W X et al. Influences of B4C content and particle size on the mechanical properties of hot pressed TiB2-B4C composites[J]. Journal of Asian Ceramic Societies, 9, 1239(2021).
[21] HAO J J, LI J Y, ZOU B L et al. Effect of phase composition on the oxidation resistance of ZrB2-SiC coatings[J]. Journal of European Ceramic Society, 42, 2097(2022).
[22] MA M D, YE B L, HAN Y J et al. High-pressure sintering of ultrafine-grained high-entropy diboride ceramics[J]. Journal of the American Ceramic Society, 103, 6655(2020).
[23] MONTEVERDE F, SARAGA F, GABOARDI M. Compositional disorder and sintering of entropy stabilized (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders[J]. Journal of the American Ceramic Society, 40, 3807(2020).
[24] MOSHTAGHIOUN B M, GOMEA-ARCIA D, DOMING- RODRIGUEZ A et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics[J]. Journal of European Ceramic Society, 36, 1829(2016).
[25] ZHANG Y, SUN S K, GUO W M et al. Optimal preparation of high-entropy boride-silicon carbide ceramics[J]. Journal of Advanced Ceramics, 10, 173(2021).
[26] LIU J X, SHEN X Q, WU Y et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. Journal of Advanced Ceramics, 9, 503(2020).
[27] SONG Q, ZHANG Z H, HU Z Y et al. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic[J]. Journal of Alloys and Compounds, 831: 154852(2020).
[28] FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region[J]. Journal of the American Ceramic Society, 90, 143(2007).
[29] YE B L, WEN T Q, CHU Y H. High-emperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air.[J]. Journal of the American Ceramic Society, 103, 500(2020).
[30] ZENG L Y, LIU Q Y, SUN S K. Microstructure evolution of MeB2 (Me=Zr, Ti) powders prepared by borothermal reduction during heat treatment at 1000 ℃-1800 ℃[J]. Ceramics International, 45, 23794(2020).
Get Citation
Copy Citation Text
Guoang LIU, Hailong WANG, Cheng FANG, Feilong HUANG, Huan YANG.
Category:
Received: Nov. 28, 2023
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: Hailong WANG (119whl@zzu.edu.cn), Cheng FANG (fangcheng@zzu.edu.cn)